Chin. Phys. Lett.  2019, Vol. 36 Issue (5): 057102    DOI: 10.1088/0256-307X/36/5/057102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Negative Longitudinal Magnetoresistance in the $c$-Axis Resistivity of Cd
Xin-Min Wang1,2, Ling-Xiao Zhao1, Jing Li1,2, Mo-Ran Gao1,2, Wen-Liang Zhu1,2, Chao-Yang Ma1, Yi-Yan Wang1, Shuai Zhang1, Zhi-An Ren1,2,3, Gen-Fu Chen1,2,3**
1Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049
3Songshan Lake Materials Laboratory, Dongguan 523808
Cite this article:   
Xin-Min Wang, Ling-Xiao Zhao, Jing Li et al  2019 Chin. Phys. Lett. 36 057102
Download: PDF(1759KB)   PDF(mobile)(1745KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report a systematic study on magnetotransport properties of the single crystal of cadmium (Cd). When the applied magnetic field $B$ is perpendicular to the current $I$, the resistivities for both directions ($I\parallel a$, $I \parallel c$) show field induced metal-to-insulator-like transitions. The isothermal magnetoresistance (MR) at low temperatures increases approximately as the square of the magnetic field without any sign of saturation, and reaches up to 1140000% and 58000% at $T=2$ K and $B=9$ T for $I\parallel a$ and $I\parallel c$, respectively. As the magnetic field rotates to parallel to the current, no sign of negative MR is observed for $I\parallel a$, while an obvious negative MR appears up to $-$70% at 2 K and 9 T for the current flowing along the $c$-axis, and the negative longitudinal MR shows a strong dependence of the electrode position on the single crystal. These results suggest that the negative longitudinal MR is caused by the dislocations formed in the process of crystal growing along the $c$-axis. Further studies are needed to clarify this point.
Received: 28 January 2019      Published: 17 April 2019
PACS:  71.55.Ak (Metals, semimetals, and alloys)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  81.10.Bk (Growth from vapor)  
Fund: Supported by the National Key Research Program of China under Grant Nos 2016YFA0401000 and 2016YFA0300604, the National Basic Research Program of China under Grant No 2015CB921303, the Strategic Priority Research Program (B) of Chinese Academy of Sciences under Grant No XDB07020100, and the National Natural Science Foundation of China under Grant No 11874417.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/5/057102       OR      https://cpl.iphy.ac.cn/Y2019/V36/I5/057102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xin-Min Wang
Ling-Xiao Zhao
Jing Li
Mo-Ran Gao
Wen-Liang Zhu
Chao-Yang Ma
Yi-Yan Wang
Shuai Zhang
Zhi-An Ren
Gen-Fu Chen
[1]Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P and Cava R J 2014 Nature 514 205
[2]Liang T, Gibson Q, Ali M N, Liu M H, Cava R J and Ong N P 2015 Nat. Mater. 14 280
[3]Li C Z, Wang L X, Liu H W, Wang J, Liao Z M and Yu D P 2015 Nat. Commun. 6 10137
[4]Weng H M, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029
[5]Huang X C, Zhao L X, Long Y J, Wang P P, Chen D, Yang Z H, Liang H, Xue M Q, Weng H M, Fang Z, Dai X and Chen G F 2015 Phys. Rev. X 5 031023
[6]Shekhar C, Nayak A K, Sun Y, Schmidt M, Nicklas M, Leermakers I, Zeitler U, Skourski Y, Wosnitza J, Liu Z K, Chen Y L, Schnelle W, Borrmann H, Grin Y, Felser C and Yan B H 2015 Nat. Phys. 11 645
[7]Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W D, Cava R J and Ong N P 2015 Science 350 413
[8]Chen D, Zhao L X, He J B, Liang H, Zhang S, Li C H, Shan L, Wang S C, Ren Z A, Ren C and Chen G F 2016 Phys. Rev. B 94 174411
[9]Arnold F, Shekhar C, Wu S C, Sun Y, dos Reis R D, Kumar N, Naumann M, Ajeesh M O, Schmidt M, Grushin A G, Bardarson J H, Baenitz M, Sokolov D, Borrmann H, Nicklas M, Felser C, Hassinger E and Yan B H 2016 Nat. Commun. 7 11615
[10]He J B, Chen D, Zhu W L, Zhang S, Zhao L X, Ren Z A and Chen G F 2017 Phys. Rev. B 95 195165
[11]Li C H, Long Y J, Zhao L X, Shan L, Ren Z A, Zhao J Z, Weng H M, Dai X, Fang Z, Ren C and Chen G F 2017 Phys. Rev. B 95 125417
[12]Son D T and Spivak B Z 2013 Phys. Rev. B 88 104412
[13]Burkov A A 2015 Phys. Rev. B 91 245157
[14]Zhang C L, Xu S Y, Belopolski I, Yuan Z J, Lin Z Q, Tong B B, Bian G, Alidoust N, Lee C C, Huang S M, Chang T R, Chang G Q, Hsu C H, Jeng H T, Neupane M, Sanchez D S, Zheng H, Wang J F, Lin H, Zhang C, Lu H Z, Shen S Q, Neupert T, Hasan M Z and Jia S 2016 Nat. Commun. 7 10735
[15]Gurvitch M 1980 Jour. Low-Temp. Phys. 38 777
[16]Thornton T J, Roukes M L, Scherer A and Vandegaag B P 1989 Phys. Rev. Lett. 63 2128
[17]Heremans J, Thrush C M, Zhang Z, Sun X, Dresselhaus M S, Ying J Y and Morelli D T 1998 Phys. Rev. B 58 R10091
[18]Yang F Y, Liu K, Chien C L and Searson P C 1999 Phys. Rev. Lett. 82 3328
[19]Heremans J, Thrush C M, Lin Y M, Cronin S B and Dresselhaus M S 2001 Phys. Rev. B 63 085406
[20]Argyres P N and Adams E N 1956 Phys. Rev. 104 900
[21]Mansfield R and Azhdarov G 1978 Phys. Stat. Sol. (b) 87 163
[22]Hu J S, Rosenbaum T F and Betts J B 2005 Phys. Rev. Lett. 95 186603
[23]Broom R F 1958 Proc. Phys. Soc. 71 470
[24]Zhao L X, Xu Q N, Wang X M, He J B, Li J, Yang H X, Long Y J, Chen D, Liang H, Li C H, Xue M Q, Li J Q, Ren Z A, Lu L, Weng H M, Fang Z, Dai X and Chen G F 2017 Phys. Rev. B 95 115119
[25]Zhang P, Ma J Z, Ishida Y, Zhao L X, Xu Q N, Lv B Q, Yaji K, Chen G F, Weng H M, Dai X, Fang Z, Chen X Q, Fu L, Qian T, Ding H and Shin S 2017 Phys. Rev. Lett. 118 046802
[26]Zhang T T, Jiang Y, Song Z D, Huang H, He Y Q, Fang Z, Weng H M and Fang C 2019 Nature 566 475
[27]Matsubara K, Sugihara K and Tsuzuku T 1990 Phys. Rev. B 41 969
[28]Katyal O P and Gerritsen A N 1969 Phys. Rev. 178 1037
[29]Zebouni N H, Hamburg R E and Mackey H J 1963 Phys. Rev. Lett. 11 260
[30]Mackey H J, Sybert J R and Fielder J T 1967 Phys. Rev. 157 578
[31]Sondheimer E H 1950 Phys. Rev. 80 401
[32]Liu M H, Zhang J S, Chang C Z, Zhang Z C, Feng X, Li K, He K, Wang L L, Chen X, Dai X, Fang Z, Xue Q K, Ma X C and Wang Y Y 2012 Phys. Rev. Lett. 108 036805
[33]Ishiwata S, Shiomi Y, Lee J S, Bahramy M S, Suzuki T, Uchida M, Arita R, Taguchi Y and Tokura Y 2013 Nat. Mater. 12 512
[34]Zubkov M A 2015 Ann. Phys. 360 655
[35]Chernodub M N and Zubkov M A 2017 Phys. Rev. B 95 115410
Related articles from Frontiers Journals
[1] Guangqiang Wang, Guoqing Chang, Huibin Zhou, Wenlong Ma, Hsin Lin, M. Zahid Hasan, Su-Yang Xu, and Shuang Jia. Field-Induced Metal–Insulator Transition in $\beta$-EuP$_3$[J]. Chin. Phys. Lett., 2020, 37(10): 057102
[2] Can Tian, Xiao-li Huang, Yan-ping Huang, Xin Li, Di Zhou, Xin Wang, Tian Cui. High-Pressure Behavior of Nano-Pt in Hydrogen Environment[J]. Chin. Phys. Lett., 2019, 36(10): 057102
[3] Min Wu, Hongwei Zhang, Xiangde Zhu, Jianwei Lu, Guolin Zheng, Wenshuai Gao, Yuyan Han, Jianhui Zhou, Wei Ning, Mingliang Tian. Contactless Microwave Detection of Shubnikov–De Haas Oscillations in Three-Dimensional Dirac Semimetal ZrTe$_{5}$[J]. Chin. Phys. Lett., 2019, 36(6): 057102
[4] Fei Sun, M. Yang, M. W. Yang, Q. Wu, H. Zhao, X. Ye, Youguo Shi, Jimin Zhao. Coherent Acoustic Phonon and Its Chirping in Dirac Semimetal Cd$_{3}$As$_{2}$[J]. Chin. Phys. Lett., 2018, 35(11): 057102
[5] Moran Gao, Junbao He, Wenliang Zhu, Shuai Zhang, Xinmin Wang, Jing Li, Chaoyang Ma, Hui Liang, Zhian Ren, Genfu Chen. Magnetotransport Properties of a Nodal Line Semimetal TiSi[J]. Chin. Phys. Lett., 2018, 35(11): 057102
[6] Ji-Xiang Gong, Jun Yang, Min Ge, Yong-Jian Wang, Dan-Dan Liang, Lei Luo, Xiu Yan, Wei-Li Zhen, Shi-Rui Weng, Li Pi, Chang-Jin Zhang, Wen-Ka Zhu. Non-Stoichiometry Effects on the Extreme Magnetoresistance in Weyl Semimetal WTe$_{2}$[J]. Chin. Phys. Lett., 2018, 35(9): 057102
[7] Wei Cheng, Yan-Long Fu, Min-Ju Ying, Feng-Shou Zhang. Electronic Properties of Defects Induced by H Irradiation in Tantalum Phosphide[J]. Chin. Phys. Lett., 2017, 34(12): 057102
[8] Jian-Peng Sun. Topological Nodal Line Semimetal in Non-Centrosymmetric PbTaS$_2$[J]. Chin. Phys. Lett., 2017, 34(7): 057102
[9] Jin-Lian Lu, Wei Luo, Xue-Yang Li, Sheng-Qi Yang, Jue-Xian Cao, Xin-Gao Gong, Hong-Jun Xiang. Two-Dimensional Node-Line Semimetals in a Honeycomb-Kagome Lattice[J]. Chin. Phys. Lett., 2017, 34(5): 057102
[10] XU Di-Fei, DU Yong-Ping, WANG Zhen, LI Yu-Peng, NIU Xiao-Hai, YAO Qi, Dudin Pavel, XU Zhu-An, WAN Xian-Gang, FENG Dong-Lai. Observation of Fermi Arcs in Non-Centrosymmetric Weyl Semi-Metal Candidate NbP[J]. Chin. Phys. Lett., 2015, 32(10): 057102
[11] ZHANG Jun, LIU Feng-Liang, DONG Jin-Kui, XU Yang, LI Na-Na, YANG Wen-Ge, LI Shi-Yan. Structural and Transport Properties of the Weyl Semimetal NbAs at High Pressure[J]. Chin. Phys. Lett., 2015, 32(09): 057102
[12] RAO Jian-Ping, OUYANG Chu-Ying**, LEI Min-Sheng, JIANG Feng-Yi . Vacancy and H Interactions in Nb[J]. Chin. Phys. Lett., 2011, 28(12): 057102
[13] WANG Yong, **, YU Nai-Sen, LI Ming, LAU Kei-May . Improved AlGaN/GaN HEMTs Grown on Si Substrates Using Stacked AlGaN/AlN Interlayer by MOCVD[J]. Chin. Phys. Lett., 2011, 28(5): 057102
[14] YANG Ling, MA Jing-Jing, ZHU Cheng, HAO Yue, MA Xiao-Hua. Degradation of AlGaN/GaN High Electron Mobility Transistors with Different AlGaN Layer Thicknesses under Strong Electric Field[J]. Chin. Phys. Lett., 2010, 27(2): 057102
[15] YANG Ling, HAO Yue, MA Xiao-Hua, QUAN Si, HU Gui-Zhou, JIANG Shou-Gao, YANG Li-Yuan. Various Recipes of SiNx Passivated AlGaN/GaN High Electron Mobility Transistors in Correlation with Current Slump[J]. Chin. Phys. Lett., 2009, 26(11): 057102
Viewed
Full text


Abstract