CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Effect of Nanorod Diameters on Optical Properties of GaN-Based Dual-Color Nanorod Arrays |
Liang-Sen Feng1,2, Zhe Liu1,2**, Ning Zhang1,2, Bin Xue1,2, Jun-Xi Wang1,2**, Jin-Min Li1,2 |
1Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2University of Chinese Academy of Sciences, Beijing 100049
|
|
Cite this article: |
Liang-Sen Feng, Zhe Liu, Ning Zhang et al 2019 Chin. Phys. Lett. 36 027802 |
|
|
Abstract Dual-color (blue and green) InGaN/GaN nanorod light-emitting diodes (LEDs) with three different nanorod diameters are fabricated. Enhancement of luminescence intensity per area is observed in blue and green wells, to varying degrees. When the diameter is 40 nm, it sharply decreases, which could be explained by the sidewall nonradiative recombination. Time-resolved photoluminescence is conducted to study the carrier lifetime. High recombination rate is observed in nanorod arrays, and is an order of magnitude less than that of the planar LED. When the diameter is 40 nm, the nonradiative lifetime decreases, and this explains the decrease of intensity. The 3D-FDTD simulations show the enhancement of light extraction out of geometry structure by calculating the transmittance of the nanorod arrays.
|
|
Received: 21 November 2018
Published: 22 January 2019
|
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61505197 and 61334009, and the National Science and Technology Major Project under Grant No 2017YFB0403803. |
|
|
[1] | Ponce F A and Bour D P 1997 Nature 386 351 | [2] | Zhuang Z, Guo X, Liu B et al 2016 Adv. Funct. Mater. 26 36 | [3] | Nguyen H P T, Cui K, Zhang S et al 2012 Nano Lett. 12 1317 | [4] | Song K M, Kim D H, Kim J M et al 2017 Nanotechnology 28 225703 | [5] | Sekiguchi H, Kishino K and Kikuchi A 2010 Appl. Phys. Lett. 96 231104 | [6] | Li S, Wang X, Fuendling S et al 2012 Appl. Phys. Lett. 101 032103 | [7] | Hong Y J, Lee C H, Yoon A et al 2011 Adv. Mater. 23 3284 | [8] | Zhu J H, Wang L J, Zhang S M et al 2009 J. Phys. D 42 235104 | [9] | Li W, Li K, Kong F M et al 2014 Opt. Quantum Electron. 46 1413 | [10] | Sacconi F, Maur M A D and Carlo A D 2012 IEEE Trans. Electron Devices 59 2979 | [11] | Kawakami Y, Kaneta A, Su L et al 2010 J. Appl. Phys. 107 023522 | [12] | Ramesh V, Kikuchi A, Kishino K et al 2010 J. Appl. Phys. 107 114303 | [13] | Chang H J, Hsieh Y P, Chen T T et al 2007 Opt. Express 15 9357 | [14] | Zhang Z H, Liu W, Tan S T et al 2014 Appl. Phys. Lett. 105 153503 | [15] | Tseng W J, Gonzalez M, Dillemans L et al 2012 Appl. Phys. Lett. 101 253102 | [16] | Xie E Y, Chen Z Z, Edwards P R et al 2012 J. Appl. Phys. 112 013107 | [17] | Jiao Q Q, Chen Z Z, Feng Y L et al 2017 Appl. Phys. Lett. 110 052103 | [18] | Kuo M L, Kim Y S, Hsieh M L et al 2011 Nano Lett. 11 476 | [19] | Chang C H, Chen L Y, Huang L C et al 2012 IEEE J. Quantum Electron. 48 551 | [20] | Kim H, Shin D S, Ryu H Y et al 2010 Jpn. J. Appl. Phys. 49 112402 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|