|
A Stable Wavelength Operation Ho:YAG Laser with Orthogonally Polarized Pump
Jing-Liang Liu, Xin-Yu Chen, Rui-Ming Wang, Chun-Ting Wu, Guang-Yong Jin
Chin. Phys. Lett. 2019, 36 (2):
024201
.
DOI: 10.1088/0256-307X/36/2/024201
A stable wavelength operation Ho:YAG laser dual-pumped by two orthogonally polarized Tm:YLF lasers is reported. Under the cw operation mode, a laser output power of 24 W is measured. The corresponding optical-optical conversion efficiency is 44.75% and the slope efficiency is 50.12%. Under the Q-switched operation mode, the output maximum average power is 22.8 W at the re-frequency of 6 kHz. The corresponding optical-optical conversion efficiency and slope efficiency are 42.64% and 48.01%, respectively. The output central wavelength is 2090.73 nm, the linewidth is 0.40 nm, and the beam quality is $M^{2} < 1.6$. Moreover, the shift of the output central wavelength is less than 0.01 nm, and the linewidth shift is also less than 0.01 nm.
|
|
Probing Lattice Vibrations at SiO$_{2}$/Si Surface and Interface with Nanometer Resolution
Yue-Hui Li, Mei Wu, Rui-Shi Qi, Ning Li, Yuan-Wei Sun, Cheng-Long Shi, Xue-Tao Zhu, Jian-Dong Guo, Da-Peng Yu, Peng Gao
Chin. Phys. Lett. 2019, 36 (2):
026801
.
DOI: 10.1088/0256-307X/36/2/026801
Recent advances in monochromatic aberration corrected electron microscopy make it possible to detect the lattice vibrations with both high-energy resolution and high spatial resolution. Here, we use sub-10 meV electron energy loss spectroscopy to investigate the local vibrational properties of the SiO$_{2}$/Si surface and interface. The energy of the surface mode is thickness dependent, showing a blue shift as $z$-thickness (parallel to the fast electron beam) of SiO$_{2}$ film increases, while the energy of the bulk mode and the interface mode keeps constant. The intensity of the surface mode is well-described by a Bessel function of the second kind. The mechanism of the observed spatially dependent vibrational behavior is discussed and compared with dielectric response theory analysis. Our nanometer scale measurements provide useful information on the bonding conditions at the surface and interface.
|
|
Phonon Limited Electron Mobility in Germanium FinFETs: Fin Direction Dependence
Ying Jing, Gen-Quan Han, Yan Liu, Jin-Cheng Zhang, Yue Hao
Chin. Phys. Lett. 2019, 36 (2):
027301
.
DOI: 10.1088/0256-307X/36/2/027301
We investigate the phonon limited electron mobility in germanium (Ge) fin field-effect transistors (FinFETs) with fin rotating within (001), (110), and (111)-oriented wafers. The coupled Schrödinger–Poisson equations are solved self-consistently to calculate the electronic structures for the two-dimensional electron gas, and Fermi's golden rule is used to calculate the phonon scattering rate. It is concluded that the intra-valley acoustic phonon scattering is the dominant mechanism limiting the electron mobility in Ge FinFETs. The phonon limited electron motilities are influenced by wafer orientation, channel direction, fin thickness $W_{\rm fin}$, and inversion charge density $N_{\rm inv}$. With the fixed $W_{\rm fin}$, fin directions of $\langle 110\rangle$, $\langle 1\bar{1}2\rangle$ and $\langle \bar{1}10\rangle$ within (001), (110), and (111)-oriented wafers provide the maximum values of electron mobility. The optimized $W_{\rm fin}$ for mobility is also dependent on wafer orientation and channel direction. As $N_{\rm inv}$ increases, phonon limited mobility degrades, which is attributed to electron repopulation from a higher mobility valley to a lower mobility valley as $N_{\rm inv}$ increases.
|
|
Influence of Precursor Powder Fabrication Methods on the Superconducting Properties of Bi-2223 Tapes
Li-Jun Cui, Ping-Xiang Zhang, Guo Yan, Yong Feng, Xiang-Hong Liu, Jian-Feng Li, Xi-Feng Pan, Sheng-Nan Zhang, Xiao-Bo Ma, Jin-Shan Li
Chin. Phys. Lett. 2019, 36 (2):
027401
.
DOI: 10.1088/0256-307X/36/2/027401
Bi-2223 precursor powders are prepared by both oxalate co-precipitation (CP) and spray pyrolysis (SP) methods. The influence of fabrication methods on the superconducting properties of Bi-2223 tapes are systematically studied. Compared to the CP method, SP powder exhibits spherical particle before calcination and smaller particle size after calcinations with more uniform chemical composition, which leads to a lower reaction temperature during calcination process for Bi-2223 tapes. Meanwhile, the non-superconducting phases in SP powder are more uniformly distributed with smaller particle sizes. These features result in finer homogeneity of critical current in large-length of Bi-2223 tape, higher density of filaments and better texture after heat treatment. Therefore, the SP method could be considered as a better route to prepare precursor powder for large-length Bi-2223 tape fabrication.
|
|
Absorptive Fabry–Pérot Interference in a Metallic Nanostructure
Rui Wang, Yan-Ling Wu, B. H. Yu, Li-Li Hu, C. Z. Gu, J. J. Li, Jimin Zhao
Chin. Phys. Lett. 2019, 36 (2):
027801
.
DOI: 10.1088/0256-307X/36/2/027801
In conventional optics, the Fabry–Pérot (FP) effect is only considered for transparent materials at a macroscopic dimension. Down to the nanometer scale, for absorptive metallic structures, the FP effect has not been directly observed so far. It is unclear whether such a macroscopic effect still holds for a subwavelength metallic nanostructure. Here, we demonstrate the probing of FP interference in a series of nanometer-thick Au films with subwavelength hole arrays. The evidence from both linear and second harmonic generation signals, together with angle-resolved investigations, exhibit features of a FP effect. We also derive an absorptive FP interference equation, which well explains our experimental results. Our results for the first time experimentally confirm the long-persisting hypothesis that the FP effect holds ubiquitously in a metallic nanostructure.
|
|
Effect of Nanorod Diameters on Optical Properties of GaN-Based Dual-Color Nanorod Arrays
Liang-Sen Feng, Zhe Liu, Ning Zhang, Bin Xue, Jun-Xi Wang, Jin-Min Li
Chin. Phys. Lett. 2019, 36 (2):
027802
.
DOI: 10.1088/0256-307X/36/2/027802
Dual-color (blue and green) InGaN/GaN nanorod light-emitting diodes (LEDs) with three different nanorod diameters are fabricated. Enhancement of luminescence intensity per area is observed in blue and green wells, to varying degrees. When the diameter is 40 nm, it sharply decreases, which could be explained by the sidewall nonradiative recombination. Time-resolved photoluminescence is conducted to study the carrier lifetime. High recombination rate is observed in nanorod arrays, and is an order of magnitude less than that of the planar LED. When the diameter is 40 nm, the nonradiative lifetime decreases, and this explains the decrease of intensity. The 3D-FDTD simulations show the enhancement of light extraction out of geometry structure by calculating the transmittance of the nanorod arrays.
|
|
Formation of Two-Dimensional AgTe Monolayer Atomic Crystal on Ag(111) Substrate
Li Dong, Aiwei Wang, En Li, Qin Wang, Geng Li, Qing Huan, Hong-Jun Gao
Chin. Phys. Lett. 2019, 36 (2):
028102
.
DOI: 10.1088/0256-307X/36/2/028102
We report on the formation of two-dimensional monolayer AgTe crystal on Ag(111) substrates. The samples are prepared in ultrahigh vacuum by deposition of Te on Ag(111) followed by annealing. Using a scanning tunneling microscope (STM) and low electron energy diffraction (LEED), we investigate the atomic structure of the samples. The STM images and the LEED pattern show that monolayer AgTe crystal is formed on Ag(111). Four kinds of atomic structures of AgTe and Ag(111) are observed: (i) flat honeycomb structure, (ii) bulked honeycomb, (iii) stripe structure, (iv) hexagonal structure. The structural analysis indicates that the formation of the different atomic structures is due to the lattice mismatch and relief of the intrinsic strain in the AgTe layer. Our results provide a simple and convenient method to produce monolayer AgTe atomic crystal on Ag(111) and a template for study of novel physical properties and for future quantum devices.
|
|
Ultrafast Carrier Dynamics and Terahertz Photoconductivity of Mixed-Cation and Lead Mixed-Halide Hybrid Perovskites
Wan-Ying Zhao, Zhi-Liang Ku, Li-Ping Lv, Xian Lin, Yong Peng, Zuan-Ming Jin, Guo-Hong Ma, Jian-Quan Yao
Chin. Phys. Lett. 2019, 36 (2):
028401
.
DOI: 10.1088/0256-307X/36/2/028401
Using time-dependent terahertz spectroscopy, we investigate the role of mixed-cation and mixed-halide on the ultrafast photoconductivity dynamics of two different methylammonium (MA) lead-iodide perovskite thin films. It is found that the dynamics of conductivity after photoexcitation reveals significant correlation on the microscopy crystalline features of the samples. Our results show that mixed-cation and lead mixed-halide affect the charge carrier dynamics of the lead-iodide perovskites. In the (5-AVA)$_{0.05}$(MA)$_{0.95}$PbI$_{2.95}$Cl$_{0.05}$/spiro thin film, we observe a much weaker saturation trend of the initial photoconductivity with high excitation fluence, which is attributed to the combined effect of sequential charge carrier generation, transfer, cooling and polaron formation.
|
19 articles
|