Chin. Phys. Lett.  2018, Vol. 35 Issue (9): 098101    DOI: 10.1088/0256-307X/35/9/098101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling
Shu-Zhe Mei1,2, Quan Wang1,3, Mei-Lan Hao1,2,4, Jian-Kai Xu1,2, Hong-Ling Xiao1,2, Chun Feng1,2, Li-Juan Jiang1,2, Xiao-Liang Wang1,2**, Feng-Qi Liu1,2, Xian-Gang Xu3, Zhan-Guo Wang1,2
1Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2University of Chinese Academy of Sciences, Beijing 100049
3State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100
4School of Information & Electrical Engineering, Hebei University of Engineering, Handan 056038
Cite this article:   
Shu-Zhe Mei, Quan Wang, Mei-Lan Hao et al  2018 Chin. Phys. Lett. 35 098101
Download: PDF(11757KB)   PDF(mobile)(11759KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Metal organic chemical vapor deposition (MOCVD) growth systems are one of the main types of equipment used for growing single crystal materials, such as GaN. To obtain film epitaxial materials with uniform performance, the flow field and temperature field in a GaN-MOCVD reactor are investigated by modeling and simulating. To make the simulation results more consistent with the actual situation, the gases in the reactor are considered to be compressible, making it possible to investigate the distributions of gas density and pressure in the reactor. The computational fluid dynamics method is used to study the effects of inlet gas flow velocity, pressure in the reactor, rotational speed of graphite susceptor, and gases used in the growth, which has great guiding significance for the growth of GaN film materials.
Received: 31 May 2018      Published: 29 August 2018
PACS:  81.15.Aa (Theory and models of film growth)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  81.05.Ea (III-V semiconductors)  
Fund: Supported by the National Key R&D Program of China under Grant No 2016YFB0400104.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/9/098101       OR      https://cpl.iphy.ac.cn/Y2018/V35/I9/098101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shu-Zhe Mei
Quan Wang
Mei-Lan Hao
Jian-Kai Xu
Hong-Ling Xiao
Chun Feng
Li-Juan Jiang
Xiao-Liang Wang
Feng-Qi Liu
Xian-Gang Xu
Zhan-Guo Wang
[1]Cui L et al 2015 J. Semicond. 36 103002
[2]Liu S et al 2011 J. Appl. Phys. 110 113514
[3]Liu S T, Zhao D G, Yang J, Jiang D S, Liang F, Chen P, Zhu J J, Liu Z S, Li X, Liu W et al 2017 Chin. Phys. B 26 107102
[4]Navamathavan R, Ra Y H, Song K Y, Kim D W and Lee C R 2011 Curr. Appl. Phys. 11 77
[5]Stringfellow G B 1999 Organometallic Vapor-Phase Epitaxy: Theory and Practice (New York: Academic Press)
[6]Wang J, Wang T Q, Pan G S and Lu X C 2016 Appl. Surf. Sci. 361 18
[7]Wang Y J et al 2017 Opt. Commun. 387 440
[8]Zhang Y, Wu Z F, Gao P F, Fang D Q and Zhang S L 2017 J. Alloys Compd. 704 478
[9]Gurary A I, Tompa G S, Thompson A G, Stall R A, Zawadzki P A and Schumaker N E 1994 J. Cryst. Growth 145 642
[10]Hwang C Y, Schurman M J, Mayo W E, Lu Y C, Stall R A and Salagaj T 1997 J. Electron. Mater. 26 243
[11]Thompson A G 1997 Mater. Lett. 30 255
[12]Li J, Wang J, Cai J D, Xu Y F, Fan B F and Wang G 2018 Int. Commun. Heat Mass Transfer 91 64
[13]Breil W G, Coltrin M E, Creighton J R, Hou H Q, Moffat H K and Tsao J Y 1999 Mater. Sci. Eng. R 24 241
[14]Dimitrios I, Kremer A M, McKenna D R and Jensen K F 1987 J. Cryst. Growth 85 154
[15]Fotiadis D I and Jensen K F 1990 J. Cryst. Growth 102 743
[16]Kuo W S, Wang C Y, Tuh J L and Lin T F 2005 J. Cryst. Growth 274 265
[17]Kadinski L, Merai V, Parekh A, Ramer J, Armour E, Stall R, Gurary A, Galyukov A and Makarov Y 2004 J. Cryst. Growth 261 175
[18]Shin C Y, Baek B J, Lee C R, Pak B, Yoon J M and Park K S 2003 J. Cryst. Growth 247 301
[19]Gkinis P A, Aviziotis I G, Koronaki E D, Gakis G P, Boudouvis A G 2017 J. Cryst. Growth 458 140
[20]Tseng C F, Tsai T Y, Huang Y H, Lee M T and Horng R H 2015 J. Cryst. Growth 432 54
[21]Hu C K, Chen C J, Wei T C, Li T T, Huang C Y, Chao C L and Lin Y J 2017 Surf. Coat. Technol. 7 112
[22]Wu Y Y 2017 Dynamic Simulation and Modelling of Chemical Vapour Deposition Process (Nottingham: University of Nottingham)
[23]Li J, Fei Z Y, Xu Y F, Wang J, Fan B F, Ma X J and Wang G 2018 R. Soc. Open Sci. 5 171757
[24]Kazakov D V, Tomas V, Bernhard Z, J Andrew C, Spagnolo D V et al 1999 Organometallic vapor-phase epitaxy (New York: Academic Press) p 251
[25]Panton R L 2013 Incompressible Flow 4th edn (New York: Wiley)
Related articles from Frontiers Journals
[1] F. V. Grigoriev, V. B. Sulimov, Jinlong Zhang, Xinbin Cheng, Zhanshan Wang, A. V. Tikhonravov. Influence of Small-Size Contaminations on Thin Film Structural Properties[J]. Chin. Phys. Lett., 2019, 36(3): 098101
[2] WU Ping-Ping, GAO Fang-Liang, ZHANG Shu-Guang, LI Guo-Qiang. Surface Morphology of GaAs/In0.3Ga0.7As in an Elastic Field of Static Point Defects[J]. Chin. Phys. Lett., 2014, 31(2): 098101
[3] ZHAO Gui-Juan, YANG Shao-Yan, LIU Gui-Peng, LIU Chang-Bo, SANG Ling, GU Cheng-Yan, LIU Xiang-Lin, WEI Hong-Yuan, ZHU Qin-Sheng, WANG Zhan-Guo. Strain Distributions in Non-Polar a-Plane InxGa1?xN Epitaxial Layers on r-Plane Sapphire Extracted from X-Ray Diffraction[J]. Chin. Phys. Lett., 2013, 30(9): 098101
[4] LIU Lin-Xia, GUAN Sheng-Guo, LIU Qi, ZHANG Ya-Ting, SHAO Cheng-Gang, LUO Jun. Precision Measurement of Distribution of Film Thickness on Pendulum for Experiment of G[J]. Chin. Phys. Lett., 2009, 26(9): 098101
[5] FAN Hai-Bo, YANG Shao-Yan, ZHANG Pan-Feng, WEI Hong-Yuan, LIU Xiang-Lin, JIAO Chun-Mei, ZHU Qin-Sheng, CHEN Yong-Hai, WANG Zhan-Guo. A Simple Route of Morphology Control and Structural and Optical Properties of ZnO Grown by Metal-Organic Chemical Vapour Deposition[J]. Chin. Phys. Lett., 2008, 25(8): 098101
[6] XU Wen-Bin, DONG Shu-Rong, WANG De-Miao. Modelling and Optimization for Deposition of SiOxNy Films by Radio-Frequency Reactive Sputtering[J]. Chin. Phys. Lett., 2007, 24(9): 098101
[7] GUAN Li, ZHANG Duan-Ming, LI Zhi-Hua, TAN Xin-Yu, LI Li, LIU Dan, FANG Ran-Ran, LIU Gao-Bin, HU De-Zhi. Effect of Incident Intensity on Films Growth in Pulsed Laser Deposition[J]. Chin. Phys. Lett., 2006, 23(8): 098101
[8] SHAO Qing-Yi, FANG Rong-Chuan, ZHU Kai-Gui, LIAO Yuan, XUE Zeng-Quan. Initial Growth of Thin Films with Low Nucleus Density and Linear Lateral Growth Rate on a Substrate Surface[J]. Chin. Phys. Lett., 2001, 18(8): 098101
[9] XU Ming-Chun QIAN Hai-Jie, LIU Feng-Qin, KRASH Ibrahim, LAI Wu-Yan, WU Si-Cheng. Pb Surfactant-Assisted Co Film Growth on Cu (111)[J]. Chin. Phys. Lett., 2000, 17(8): 098101
Viewed
Full text


Abstract