CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Aligned Elongation of Ag Nanoparticles Embedded in Silica Irradiated with High Energy Ni Ions |
Yi-Tao Yang1**, Chong-Hong Zhang1, Chang-Hao Su1,2, Zhao-Nan Ding1,2, Yin Song1, Yu-Guang Chen1,2 |
1Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 2University of Chinese Academy of Sciences, Beijing 100049
|
|
Cite this article: |
Yi-Tao Yang, Chong-Hong Zhang, Chang-Hao Su et al 2018 Chin. Phys. Lett. 35 096102 |
|
|
Abstract Metallic nanoparticle (NP) shapes have a significant influence on the property of composite embedded with metallic NPs. Swift heavy ion irradiation is an effective way to modify shapes of metallic NPs embedded in an amorphous matrix. We investigate the shape deformation of Ag NPs with irradiation fluence, and 357 MeV Ni ions are used to irradiate the silica containing Ag NPs, which are prepared by ion implantation and vacuum annealing. The UV-vis results show that the surface plasmon resonance (SPR) peak from Ag NPs shifts from 400 to 377 nm. The SPR peak has a significant shift at fluence lower than $1\times10^{14}$ ions/cm$^{2}$ and shows less shift at fluence higher than $1\times10^{14}$ ions/cm$^{2}$. The TEM results reveal that the shapes of Ag NPs also show significant deformation at fluence lower than $1\times10^{14}$ ions/cm$^{2}$ and show less deformation at fluence higher than $1\times10^{14}$ ions/cm$^{2}$. The blue shift of the SPR peak is considered to be the consequence of defect production and Ag NP shape deformation. Based on the thermal spike model calculation, the temperature of the silica surrounding Ag particles first increases rapidly, then the region of Ag NPs close to the interface of Ag/silica is gradually heated. Therefore, the driven force of Ag NPs deformation is considered as the volume expansion of the first heated silica layer surrounding Ag NPs.
|
|
Received: 23 May 2018
Published: 29 August 2018
|
|
PACS: |
61.82.Ms
|
(Insulators)
|
|
78.67.Sc
|
(Nanoaggregates; nanocomposites)
|
|
61.80.-x
|
(Physical radiation effects, radiation damage)
|
|
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
|
78.67.Qa
|
(Nanorods)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11475230 and U1532262. |
|
|
[1] | Meldrum A, Haglund Jr R F, Boatner L A and White C W 2001 Adv. Mater. 13 1431 | [2] | Kreibig U and Genzel L 1985 Surf. Sci. 156 678 | [3] | Mulvaney P 2011 MRS Bull. 26 1009 | [4] | Roorda S, Dillen T, Polman A, Graf C and Blaaderen A 2004 Adv. Mater. 16 235 | [5] | Orleans C D, Stoquert J P, Estournes C, Cerruti C, Grob J J, Guille J L, Hass F, Muller D and Richard-Plouet M 2003 Phys. Rev. B 67 220101 | [6] | Oliver A, Reys-Esqueda J A, Cheang-Wong J C, Roman-Velazquez C E, Crespo-Sosa A, Rodriguez-Fernandez L, Seman J A and Noguez C 2006 Phys. Rev. B 74 245425 | [7] | Dawi E A, Rizza G, Mink M P, Vredenberg A M and Habraken F H P M 2009 J. Appl. Phys. 105 074305 | [8] | Penninkhof J J, van Dillen T, Roorda S, Graf C, van Blaadern A, Vredenberg A M and Polman A 2006 Nucl. Instrum. Methods Phys. Res. Sect. B 242 523 | [9] | Ridgway M C, Giulian R, Sprouster D J, Kluth P, Araujo L L, Llewellyn D J, Byrne A P, Kremer F, Fichtner P F P, Rizza G, Amekura H and Toulemonde M 2011 Phys. Rev. Lett. 106 095505 | [10] | Orleans C D, Stoquert J P, Estournes C, Grob J J, Muller D, Guille J L, Richard-Plouet M, Cerruti C and Hass F 2004 Nucl. Instrum. Methods Phys. Res. Sect. B 216 372 | [11] | Orleans C D, Stoquert J P, Estournes C, Grob J J, Muller D, Cerruti C and Hass F 2004 Nucl. Instrum. Methods Phys. Res. Sect. B 225 154 | [12] | Giulian R, Kluth P, Sprouster D J, Araujo L L, Byrne A and Ridgway M C 2008 Nucl. Instrum. Methods Phys. Res. Sect. B 266 3158 | [13] | Kumar H, Ghosh S, Avasthi D K, Kabiraj D, Mücklich A, Zhou S Q, Schmidt H and Stoquert J P 2011 Nanoscale Res. Lett. 6 155 | [14] | Amekura H, Ishikawa N, Okubo N, Ridgway M C, Giulian R, Mitsuishi K, Nakayama Y, Buchal Ch, Mantl S and Kishimoto N 2011 Phys. Rev. B 83 205401 | [15] | Giulian R, Kluth P, Araujo L L, Sprouster D J, Byrne A P, Cookson D J and Ridgway M C 2008 Phys. Rev. B 78 125413 | [16] | Ridgway M C, Kluth P, Giulian R, Sprouster D J, Araujo L L, Schnohr C S, Llewellyn D J, Byrne A P, Foran G J and Cookson D J 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 931 | [17] | Coulon P, Amici J, Clochard M, Khomenkov V, Durour C, Monnet I, Grygiel C, Perruchas S, Ulysse C, Largeau L and Rizza G 2016 Sci. Rep. 6 21116 | [18] | Awazu K, Wang X, Fujimaki M, Tominaga J, Aiba H, Ohki Y and Komatsubara T 2008 Phys. Rev. B 78 054102 | [19] | Ridgway M C, Djurabekova F and Nordlund K 2015 Curr. Opin. Solid State Mater. Sci. 19 29 | [20] | Ziegler J F, Biersack J P and Littmark U 1985 The Stopping and Range of Ions in Solids (New York: Pergamon) | [21] | Mie G 1908 Ann. Phys. 330 377 | [22] | Yang Y, Zhang C, Song Y, Gou J, Zhang L Q, Meng Y C, Zhang H Q and Ma Y Z 2013 Nucl. Instrum. Methods Phys. Res. Sect. B 308 24 | [23] | Rizza G, Coulon P E, Khomenkov V, Dufour C, Monnet I, Toulemonde M, Perruchas S, Gacoin T, Mailly D, Lafosse X, Ulysse C and Dawi E A 2012 Phys. Rev. B 86 035450 | [24] | Dufour C, Khomenkov V, Rizza G and Toulemonde M 2012 J. Phys. D 45 065302 | [25] | Toulemonde M, Dufour C and Paumier E 1992 Phys. Rev. B 46 14362 | [26] | Singh F, Mohapatra S, Stoquert J, Avasthi D K and Pivin J C 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 936 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|