Chin. Phys. Lett.  2018, Vol. 35 Issue (8): 087102    DOI: 10.1088/0256-307X/35/8/087102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
New Type of Nitrides with High Electrical and Thermal Conductivities
Ning Liu1,2, Xiaolong Chen1,2,3**, Jiangang Guo1**, Jun Deng1,2, Liwei Guo1
1Research & Development Center for Functional Crystals, Laboratory of Advanced Materials & Electron Microscopy, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2University of Chinese Academy of Sciences, Beijing 100049
3Collaborative Innovation Center of Quantum Matter, Beijing 100084
Cite this article:   
Ning Liu, Xiaolong Chen, Jiangang Guo et al  2018 Chin. Phys. Lett. 35 087102
Download: PDF(1823KB)   PDF(mobile)(2583KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The nitrogen dimer as both a fundamental building unit in designing a new type of nitrides, and a material gene associated with high electrical and thermal conductivities is investigated by first principles calculations. The results indicate that the predicted SiN$_{4}$ is structurally stable and reasonably energy-favored with a striking feature in its band structure that exhibits free electron-like energy dispersions. It possesses a high electrical conductivity ($5.07\times10^{5}$ S/cm) and a high thermal conductivity (371 W/m$\cdot$K) comparable to copper. The validity is tested by isostructural AlN$_{4}$ and SiC$_{4}$. It is demonstrated that the nitrogen dimers can supply a high density of delocalized electrons in this new type of nitrides.
Received: 28 May 2018      Published: 15 July 2018
PACS:  71.20.Ps (Other inorganic compounds)  
  72.15.Eb (Electrical and thermal conduction in crystalline metals and alloys)  
  78.40.Kc (Metals, semimetals, and alloys)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 51532010, 91422303, 51672306 and 51772322, the National Key Research and Development Program of China under Grant No 2016YFA0300604, the Beijing Municipal Science & Technology Commission under Grant No Z161100002116018, and the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB07020100.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/8/087102       OR      https://cpl.iphy.ac.cn/Y2018/V35/I8/087102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ning Liu
Xiaolong Chen
Jiangang Guo
Jun Deng
Liwei Guo
[1]Nosengo N 2016 Nature 533 22
[2]Mueller T et al 2016 Rev. Comput. Chem. 29 186
[3]Isayev O et al 2015 Chem. Mater. 27 735
[4]Seko A et al 2015 Phys. Rev. Lett. 115 205901
[5]Carrete J et al 2014 Phys. Rev. X 4 011019
[6]Isayev O et al 2017 Nat. Commun. 8 15679
[7]Fujimura K et al 2013 Adv. Energy Mater. 3 980
[8]Mnih V et al 2015 Nature 518 529
[9]Silver D et al 2017 Nature 550 354
[10]Dresselhaus M S and Dresselhaus G 2002 Adv. Phys. 51 1
[11]Novoselov K S et al 2004 Science 306 666
[12]MacDiarmid A G 2001 Rev. Mod. Phys. 73 701
[13]Castro Neto A H et al 2009 Rev. Mod. Phys. 81 109
[14]Le T et al 2017 Polymers 9 150
[15]Abram R A et al 1978 Adv. Phys. 27 799
[16]Graphite is not an intrinsic metal
[17]Vajenine G V et al 2001 Inorg. Chem. 40 4866
[18]Auffermann G et al 2001 Angew. Chem. Int. Ed. 40 547
[19]Auffermann G et al 2006 Z. Anorg. Allg. Chem. 632 565
[20]Toraya H 2000 J. Appl. Crystallogr. 33 95
[21]Du Boulay D et al 2004 Acta Crystallogr. Sect. B 60 388
[22]Sheng X et al 2011 Phys. Rev. Lett. 106 155703
[23]Zhang J et al 2017 Nat. Commun. 8 683
[24]Jo J Y and Kim B G 2012 Phys. Rev. B 86 075151
[25]Hohenberg P and Kohn W 1964 Phys. Rev. B 136 B864
[26]Kohn W and Sham L J 1965 Phys. Rev. 140 1133
[27]Perdew J P et al 1996 Phys. Rev. Lett. 77 3865
[28]Langreth D C and Mehl M J 1983 Phys. Rev. B 28 1809
[29]Pfrommer B G et al 1997 J. Comput. Phys. 131 233
[30]Getmanskii I V et al 2017 J. Phys. Chem. C 121 22187
[31]Steglenko D V et al 2017 Russ. J. Inorg. Chem. 62 802
[32]See the Supplemental Material for computational methods and results for cubic SiN$_{4}$ (Table S1, Figs. S1, S2, S4), cubic BN$_{4}$(Fig. S3), hexagonal SiN$_{4}$(Figs. S5–S7), cubic AlN$_{4}$(Table S2, Figs. S8–S10) and cubic SiC$_{4}$(Table S3, Figs. S11–S14).
[33]Wang H et al 2006 J. Phys.: Condens. Matter 18 10663
[34]Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397
[35]Bardeen J and Shockley W 1950 Phys. Rev. 80 72
[36]Xi J et al 2012 Nanoscale 4 4348
[37]Riedel R et al 1997 Angew. Chem. Int. Ed. 36 603
[38]Sun W et al 2017 Chem. Mater. 29 6936
[39]Schneider S B et al 2012 Inorg. Chem. 51 2366
Related articles from Frontiers Journals
[1] Yuxin Yang, Wenhui Fan, Qinghua Zhang, Zhaoxu Chen, Xu Chen, Tianping Ying, Xianxin Wu, Xiaofan Yang, Fanqi Meng, Gang Li, Shiyan Li, Lin Gu, Tian Qian, Andreas P. Schnyder, Jian-gang Guo, and Xiaolong Chen. Discovery of Two Families of VSb-Based Compounds with V-Kagome Lattice[J]. Chin. Phys. Lett., 2021, 38(12): 087102
[2] Peng-Shan Li, Wei-Ran Cui, Rui Li, Hua-Lei Sun, Yan-Chun Li, Dong-Liang Yang, Yu Gong, Hui Li, Xiao-Dong Li. LaB$_{6}$ Work Function and Structural Stability under High Pressure[J]. Chin. Phys. Lett., 2017, 34(7): 087102
[3] LI Le-Le, GAO Teng-Fei, ZHANG Ruan-Yu, ZHANG Hong. Multiscale Study of Hydrogen Adsorption on Six Designed Covalent Organic Frameworks Based on Porphyrazine, Cyclobutane and Scandium[J]. Chin. Phys. Lett., 2014, 31(09): 087102
[4] K. Ephraim Babu, A. Veeraiah, D. Tirupati Swamy, V. Veeraiah. First-Principles Study of Electronic Structure and Optical Properties of Cubic Perovskite CsCaF3[J]. Chin. Phys. Lett., 2012, 29(11): 087102
[5] HU Qian-Ku, **, WANG Hai-Yan, WU Qing-Hua, HE Ju-Long, ZHANG Guang-Lei . Structural and Electronic Properties, and Pressure-Induced Phase Transition of Layered C5N: a First-Principles Investigation[J]. Chin. Phys. Lett., 2011, 28(12): 087102
[6] DU Yu-Lei. Electronic Structure and Elastic Properties of Ti3AlC from First-Principles Calculations[J]. Chin. Phys. Lett., 2009, 26(11): 087102
[7] LIU Ting-Yu, ZHANG Qi-Ren, ZHUANG Song-Lin. First-Principles Studies on Electronic Structures and Absorption Spectra of PbWO4 Crystals with Defect [VPb2---VO2+ --VPb2-]2-[J]. Chin. Phys. Lett., 2007, 24(8): 087102
[8] FAN Chang-Zeng, SUN Li-Ling, WANG Yuan-Xu, WEI Zun-Jie, LIU Ri-Ping, ZENG Song-Yan, WANG Wen-Kui. First-Principles Study on the Elastic Properties of Platinum Nitride[J]. Chin. Phys. Lett., 2005, 22(10): 087102
[9] DUAN Cheng-Jun, LI Wei-Feng, CHEN Hao-Hong, YANG Xin-Xin, ZHAO Jing-Tai, FU Yi-Bing, ZHANG Guo-Bin, QI Ze-Ming, SHI Zhao-Shu. Luminescence Properties of Ca4GdO(BO3)3:RE (RE=Eu3+,Tb3+) under VUV Excitation[J]. Chin. Phys. Lett., 2005, 22(3): 087102
[10] LIU Ting-Yu, ZHANG Qi-Ren, ZHUANG Song-Lin. First-Principles Studies on the Electronic Structures and Optical Properties for the PbWO4 Crystal Containing VPb2-[J]. Chin. Phys. Lett., 2005, 22(2): 087102
[11] WANG Hong-Bo, XUE De-Sheng. Electronic Structures and Magnetic Properties of CoN, NiN and CuN[J]. Chin. Phys. Lett., 2004, 21(8): 087102
[12] ZENG Xiao-Qing, HONG Guang-Yan, YOU Hong-Peng, WU Xue-Yan, KIM Chang-Hong, PYUN Chong-Hong, YU Byung-Yong, BAE Hyun-Sook, PARK Cheal-Hee, KWON Il-Eok. Luminescent Properties of Gd3PO7:Eu in UV/VUV Region [J]. Chin. Phys. Lett., 2001, 18(5): 087102
Viewed
Full text


Abstract