CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Combined Effect of Uniaxial Strain and Magnetic Field on the Exciton States in Semiconducting Single-Walled Carbon Nanotubes |
Xin-Yue Zhang1, Gui-Li Yu1**, Li-Hua Wang2, Gang Tang1 |
1School of Physical Science and Technology, China University of Mining and Technology, Xuzhou 221116 2School of Mines, China University of Mining and Technology, Xuzhou 221116
|
|
Cite this article: |
Xin-Yue Zhang, Gui-Li Yu, Li-Hua Wang et al 2018 Chin. Phys. Lett. 35 087101 |
|
|
Abstract The exciton states of semiconducting carbon nanotubes are calculated by a tight-binding model supplemented by Coulomb interactions under the combined effect of uniaxial strain and magnetic field. It is found that the excitation energies and absorption spectra of zigzag tubes (11,0) and (10,0) show opposite trends with the strain under the action of the magnetic field. For the (11,0) tube, the excitation energy decreases with the increasing uniaxial strain, with a splitting appearing in the absorption spectra. For the (10,0) tube, the variation trend firstly increases and then decreases, with a reversal point appearing in the absorption spectra. More interesting, at the reversal point the intensity of optical absorption is the largest because of the degeneracy of the two bands nearest to the Fermi Level, which is expected to be observed in the future experiment. The similar variation trend is also exhibited in the binding energy for the two kinds of semiconducting tubes.
|
|
Received: 23 April 2018
Published: 15 July 2018
|
|
PACS: |
71.35.-y
|
(Excitons and related phenomena)
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
78.67.Ch
|
(Nanotubes)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 11304378, and the Fundamental Research Funds for the Central Universities under Grant No 2017XKQY093. |
|
|
[1] | Iijima S and Ichihashi T 1993 Nature 363 603 | [2] | Bethune T W, Kiang C H, Deviries M S, Gorman G, Savoy R, Vazquez J and Beyers R 1993 Nature 363 605 | [3] | Lu J P 1997 Phys. Rev. Lett. 79 1297 | [4] | Herandex E, Goze C, Bernier P and Rubio A 1998 Phys. Rev. Lett. 80 4502 | [5] | Palaci I, Fedrigo S, Brune H, Klinke C, Chen M and Riedo E 2005 Phys. Rev. Lett. 94 175502 | [6] | Chen J W, Cagin T and Goddard W A 2000 Nanotechnology 11 65 | [7] | Collins P G, Arnold M S and Avouris P 2001 Science 292 706 | [8] | Berber S, Kwon Y K and Tomanek D 2000 Phys. Rev. Lett. 84 4613 | [9] | Perdew J P and Burke K 1996 Phys. Rev. Lett. 77 3865 | [10] | Li Z M, Tang Z K, Liu H J, Wang N, Chan C T, Saito R, Okada S, Li G D, Chen J S, Nagasawa N and Tsuda S 2001 Phys. Rev. Lett. 87 127401 | [11] | Ajiki H and Ando T 1994 Physica B 201 349 | [12] | Hagen A and Hertel T 2003 Nano Lett. 3 383 | [13] | Lebedkin S, Hennrich F, Skipa T and Kappes M M 2003 Phys. Chem. B 107 1949 | [14] | Lefebvre J, Homma Y and Finnie P 2003 Phys. Rev. Lett. 90 217401 | [15] | Spataru C D, Ismail-Beigi S, Capaz R B and Louie S G 2005 Phys. Rev. Lett. 95 247402 | [16] | Zhao H and Mazumdar S 2004 Phys. Rev. Lett. 93 157402 | [17] | Kane C L and Mele E J 2003 Phys. Rev. Lett. 90 207401 | [18] | Perebeinos V, Tersoff J and Avouris P 2005 Nano Lett. 5 2495 | [19] | Bachilo S M, Strano M S, Kittrell C, Hauge R H, Smalley R E and Weisman R B 2002 Science 298 2361 | [20] | Perebeinos V, Tersoff J and Avouris P 2004 Phys. Rev. Lett. 92 257402 | [21] | May P, Telg H, Zhong G F, Robertson J, Thomsen C and Maultzsch J 2010 Phys. Rev. B 82 195412 | [22] | Jonah S, Junichiro K, Oliver P, Vojislav K, Geert L J A R, Yuhei M, Shigeo M and Vasili P 2007 Nano Lett. 7 1851 | [23] | Jiang H, Wu G, Yang X and Dong J M 2004 Phys. Rev. B 70 125404 | [24] | Brenner D W, Schall J D, Mewkill J P, Shenderova D A and Sinnott S B 1998 Interplanet. Soc. 51 137 | [25] | Zeng H, Zhao H, Zhang F C and Cui X 2009 Phys. Rev. Lett. 102 136406 | [26] | Yang L, Anantram M P, Han J and Lu J P 1999 Phys. Rev. B 60 13874 | [27] | Kane C L and Mele E J 1997 Phys. Rev. Lett. 78 1932 | [28] | Bu W, Jiang J and Dong J M 2002 Phys. Lett. A 302 125 | [29] | Jiang H, Zhang Y, Yu G L and Dong J M 2006 Phys. Lett. A 351 308 | [30] | Heyd R, Charlier A and McRae E 1997 Phys. Rev. B 55 6820 | [31] | Zhou J, Weng H M, Wu G and Dong J M 2006 Appl. Phys. Lett. 89 013102 | [32] | Cao J, Wang Q, Rolandi M and Dai H J 2004 Phys. Rev. Lett. 93 216803 | [33] | Zhang Y, Yu G L and Dong J M 2006 Phys. Rev. B 73 205419 | [34] | Zaric S, Ostojic G N, Kono J, Shaver J, Moore V C, Strano M S, Hauge R H, Smalley R E and Wei X 2004 Science 304 1129 | [35] | Zaric S, Ostojic G N, Shaver J, Kono J, Portugall O, Frings P H, Rikken G L J A, Furis M, Crooker S A, Wei X, Moore V C, Hauge R H and Smalley R E 2006 Phys. Rev. Lett. 96 016406 | [36] | Orr B J and Ward J F 1971 Mol. Phys. 20 513 | [37] | Yu G L, Li G C, Jia Y L and Tang G 2014 Chin. Phys. Lett. 31 097102 | [38] | Yu G L, Jia Y L and Dong J M 2007 Phys. Rev. B 76 125403 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|