CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Suppressing Effects of Ag Wetting Layer on Surface Conduction of Er Silicide/Si(001) Nanocontacts |
Qing Han1,2, Qun Cai1,2** |
1State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433 2Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093
|
|
Cite this article: |
Qing Han, Qun Cai 2018 Chin. Phys. Lett. 35 087301 |
|
|
Abstract Current-voltage electrical characteristics of Er silicide/Si(001) nanocontacts are measured in situ in a scanning tunneling microscopy system. Introduced as a new technique to suppress surface leakage conduction on Si(001), a silver wetting layer is evaporated onto the substrate surface kept at room temperature with ErSi$_{2}$ nanoislands already existing. The effects of the silver layer on the current-voltage characteristics of nanocontacts are discussed. Our experimental results reveal that the silver layer at coverage of 0.4–0.7 monolayer can suppress effectively the current contribution from the surface conduction path. After the surface leakage path of nanocontacts is obstructed, the ideality factor and the Schottky barrier height are determined using the thermionic emission theory, about 2 and 0.5 eV, respectively. The approach adopted here could shed light on the intrinsic transport properties of metal-semiconductor nanocontacts.
|
|
Received: 03 April 2018
Published: 15 July 2018
|
|
PACS: |
73.63.Rt
|
(Nanoscale contacts)
|
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
68.35.-p
|
(Solid surfaces and solid-solid interfaces: structure and energetics)
|
|
73.25.+i
|
(Surface conductivity and carrier phenomena)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 11374058. |
|
|
[1] | Léonard F and Talin A A 2011 Nat. Nanotechnol. 6 773 | [2] | Requist R, Baruselli P P, Smogunov A, Fabrizio M, Modesti S and Tosatti E 2016 Nat. Nanotechnol. 11 499 | [3] | Kubo O, Shingaya Y, Aono M and Nakayama T 2006 Appl. Phys. Lett. 88 233117 | [4] | Vitali L, Levita G, Ohmann R, Comisso A, De Vita A and Kern K 2010 Nat. Mater. 9 320 | [5] | Liu X Y, Zou Z Q, Sun L M and Li X 2013 Appl. Phys. Lett. 103 043116 | [6] | Lord A M, Maffeis T G, Kryvchenkova O, Cobley R J, Kalna K, Kepaptsoglou D M, Ramasse Q M, Walton A S, Ward M B, Koble J and Wilks S P 2015 Nano Lett. 15 4248 | [7] | Liu X Y and Zou Z Q 2015 Nanotechnology 26 195704 | [8] | Lee S Y and Lee S K 2007 Nanotechnology 18 495701 | [9] | Hao L and Bennett P A 2009 Nanotechnology 20 355201 | [10] | Song J Q, Ding T and Cai Q 2010 Appl. Phys. Lett. 96 203113 | [11] | Zou Z Q, Liu X Y, Sun L M and Li X 2014 Appl. Phys. Lett. 105 231606 | [12] | Dupont-Ferrier E, Mallet P, Magaud L and Veuillen J Y 2007 Phys. Rev. B 75 205315 | [13] | Wang K, Zhang X, Loy M M T and Xiao X 2008 Surf. Sci. 602 1217 | [14] | Ding T, Wu Y, Song J, Li J, Huang H, Zou J and Cai Q 2011 Nanotechnology 22 245707 | [15] | Song J Q, Ding T, Li J and Cai Q 2010 Surf. Sci. 604 361 | [16] | Lin X F, Wan K J and Nogami J 1994 Phys. Rev. B 49 7385 | [17] | Takeuchi O, Kageshima M, Sakama H and Kawazu A 2001 Jpn. J. Appl. Phys. 40 4414 | [18] | Yeom H W, Matsuda I, Tono K and Ohta T 1998 Phys. Rev. B 57 3949 | [19] | Matsuda I, Yeom H W, Tono K and Ohta T 1999 Phys. Rev. B 59 15784 | [20] | Matsuda I, Yeom H W, Tono K and Ohta T 1999 Surf. Sci. 438 231 | [21] | Lin X F, Wan K J and Nogami J 1993 Phys. Rev. B 47 10947 | [22] | Zhu Y, Zhou W, Wang S H, Ji T, Hou X Y and Cai Q 2006 J. Appl. Phys. 100 114312 | [23] | Sze S M 1981 Phys. Semiconductor Devices 2nd edn (New York: Wiley) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|