CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Metastable Electron Traps in Modified Silicon-on-Insulator Wafer |
Li-Hua Dai1,2**, Da-Wei Bi1, Zheng-Xuan Zhang1, Xin Xie1,2, Zhi-Yuan Hu1, Hui-Xiang Huang3, Shi-Chang Zou1 |
1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 2University of Chinese Academy of Sciences, Beijing 100049 3Information Engineering College, Jimei University, Fujian 361021
|
|
Cite this article: |
Li-Hua Dai, Da-Wei Bi, Zheng-Xuan Zhang et al 2018 Chin. Phys. Lett. 35 056101 |
|
|
Abstract We perform the total ionizing radiation and electrical stress experiments to investigate the electrical characteristics of the modified silicon-on-insulator (SOI) wafers under different Si ion implantation conditions. It is confirmed that Si implantation into the buried oxide can create deep electron traps with large capture cross section to effectively improve the antiradiation capability of the SOI device. It is first proposed that the metastable electron traps accompanied with Si implantation can be avoided by adjusting the peak location of the Si implantation reasonably.
|
|
Received: 23 January 2018
Published: 30 April 2018
|
|
PACS: |
61.80.Ed
|
(γ-ray effects)
|
|
61.82.Fk
|
(Semiconductors)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 61504047, and the Fujian Provincial Department of Science and Technology under Grant No 2016J05159. |
|
|
[1] | Schwank J R, Ferlet-Cavrois V, Shaneyfelt M R et al 2003 IEEE Trans. Nucl. Sci. 50 522 | [2] | Celler G K and Cristoloveanu S 2003 J. Appl. Phys. 93 4955 | [3] | Musseau O and Ferlet-Cavrois V 2001 IEEE Nucl. Space Radiat. Eff. Conf. (Vancouver Canada, 16 July 2001) p III-22 | [4] | Stahlbush R E, Campisi G J, McKitterick J B et al 1992 IEEE Trans. Nucl. Sci. 39 2086 | [5] | Warren W L, Shaneyfelt M R, Schwank J R et al 1993 IEEE Trans. Nucl. Sci. 40 1755 | [6] | Mrstik B J, Hughes H L, Gouker P et al 2003 IEEE Trans. Nucl. Sci. 50 1947 | [7] | Bi D W, Zhang Z X, Chen M et al 2012 Nucl. Instrum. Methods Phys. Res. Sect. B 272 257 | [8] | Mrstik B J, Hughes H L, McMarr P J et al 2001 Microelectron. Eng. 59 285 | [9] | Huang H X, Bi D W, Chen M et al 2014 IEEE Trans. Nucl. Sci. 61 1400 | [10] | Zhang E X, Yu Z S, Cao Y G et al 2008 J. Vac. Sci. Technol. A 26 L1 | [11] | Schwank J R, Fleetwood D M, Xiong H D et al 2004 Microelectron. Eng. 72 362 | [12] | Liu Y, Chen H B, Liu Y R et al 2015 Chin. Phys. B 24 088503 | [13] | Dai L H, Bi D W, Hu Z Y et al 2018 Chin. Phys. B 27 048503 | [14] | Liu S T, Balster S, Sinha S et al 1999 IEEE Trans. Nucl. Sci. 46 1817 | [15] | Oldman T R 2011 IEEE Nucl. Space Radiat. Eff. Conf. (Las Vegas Nevada, 25 July 2001) p III-2 | [16] | He Z R, Chen J H, Keum J et al 2014 Org. Electron. 15 150 | [17] | He Z R, Xiao K, William D et al 2011 Adv. Funct. Mater. 21 3617 | [18] | Xiong H D, Jun B, Fleetwood D M et al 2004 IEEE Trans. Nucl. Sci. 51 3238 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|