Chin. Phys. Lett.  2018, Vol. 35 Issue (5): 056102    DOI: 10.1088/0256-307X/35/5/056102
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Hardening of an ODS Ferritic Steel after Helium Implantation and Thermal Annealing
Chang-Hao Su1,2, Chong-Hong Zhang1**, Yi-Tao Yang1, Zhao-Nan Ding1, Yu-Guang Chen1,2, Akihiko Kimura3
1Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000
2University of Chinese Academy of Sciences, Beijing 100049
3Institute of Advanced Energy, Kyoto University, Kyoto 611-0011, Japan
Cite this article:   
Chang-Hao Su, Chong-Hong Zhang, Yi-Tao Yang et al  2018 Chin. Phys. Lett. 35 056102
Download: PDF(1076KB)   PDF(mobile)(1068KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Specimens of an oxide dispersion strengthened (ODS) ferritic steel (15Cr-4Al-0.6Zr-0.1Ti) are implanted with multiple-energy He ions at room temperature to create a damage plateau of 0.4 dpa for the average (corresponding to an He concentration of about 7000 appm) from the near surface to a depth about 1 μm. The specimen is subsequently thermally annealed at 800$^{\circ}\!$C for 1 h in a vacuum so that simple defects can be formed in the as-implanted state that has undergone significant recombination, meanwhile helium bubbles at nano-scale are formed. Hardness of the specimens are tested with the nano-indentation technique. A hardening by 25% is observed. Microstructures of the specimen after irradiation/annealing are investigated with transmission electron microscopy. Helium bubbles are generally located at dislocations and grain boundaries. Using the dispersed barrier strength model, the strength factor of helium bubbles in the ODS ferritic steel is estimated to be between 0.1 and 0.26, which is close to that of helium bubbles in austenitic steels.
Received: 22 December 2017      Published: 30 April 2018
PACS:  61.80.-x (Physical radiation effects, radiation damage)  
  61.82.Bg (Metals and alloys)  
  81.40.Cd (Solid solution hardening, precipitation hardening, and dispersion hardening; aging)  
  61.72.Ff (Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.))  
Fund: Supported by the National Natural Science Foundation of China under Grant No U1532262, and the National Magnetic Confinement Fusion Program of China under Grant No 2011GB108003.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/5/056102       OR      https://cpl.iphy.ac.cn/Y2018/V35/I5/056102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chang-Hao Su
Chong-Hong Zhang
Yi-Tao Yang
Zhao-Nan Ding
Yu-Guang Chen
Akihiko Kimura
[1]Zinkle S J and Busby J T 2009 Mater. Today 12 12
[2]Romanoski G R, Snead L L, Klueh R L and Hoelzer D T 2000 J. Nucl. Mater. 283 642
[3]Yvon P and Carré F 2009 J. Nucl. Mater. 385 217
[4]Ukai S, Nishida T, Okada H and Fujiwara M 1997 J. Nucl. Sci. Technol. 34 256
[5]Mansur L K, Rowcliffe A F, Nanstad R K, Zinkle S J, Corwin W R and Stoller R E 2004 J. Nucl. Mater. 329 166
[6]Yuan D Q, Zheng Y N, Zuo Y, Fan P, Zhou D M, Zhang Q L, Ma X Q, Cui B Q, Chen L H, Jiang W S, Wu Y C, Huang Q Y, Peng L, Cao X Z, Wang B Y, Wei L and Yun S H 2014 Chin. Phys. Lett. 31 046101
[7]Fave L, Pouchon M A, Dobeli M, Borchers M S and Kimura A 2014 J. Nucl. Mater. 445 235
[8]Nakai R, Yabuuchi K, Nogami S and Hasegawa A 2016 J. Nucl. Mater. 471 233
[9]Yabuuchi K, Saito M, Kasada R and Kimura A 2011 J. Nucl. Mater. 414 498
[10]Dou P, Kimura A, Kasada R, Okuda R, Inoue M, Ukai S, Ohnuki S, Fujisawa T and Abe F 2014 J. Nucl. Mater. 444 441
[11]Ziegler J F, Biersack J P and Littmark U 1984 Stopping Range Ions Solids (New York: Pergamon) vol 1
[12]Zhang H Q, Zhang C H, Yang Y T, Meng Y C, Jang J and Kimura A 2014 J. Nucl. Mater. 455 349
[13]Singh B N and Trinkaus H 1992 J. Nucl. Mater. 186 153
[14]Li X and Bhushan B 2002 Mater. Charact. 48 11
[15]Zhang Y, Zhang C H, Zhou L H, Li B S and Yang Y T 2010 Acta Phys. Sin. 59 4130 (in Chinese)
[16]Pharr G M, Herbert E G and Gao Y 2010 Annu. Rev. Mater. Res. 40 271
[17]Nix W D and Gao H 1998 J. Mech. Phys. Solids 46 411
[18]Fu Z Y, Liu P P, Wan F R and Zhan Q 2015 Fusion Eng. Des. 91 73
[19]Kiener D 2012 J. Mater. Res. 27 2724
[20]Kasada R, Takayama Y, Yabuuchi K and Kimura A 2011 Fusion Eng. Des. 86 2658
[21]Bhattacharya A, Meslin E, Henry J, Pareige C, Décamps B, Genevois C and Brimbal D 2014 Acta Mater. 78 394
[22]Arakawa K, Hatanaka M, Mori H and Ono K 2004 J. Nucl. Mater. 329 1194
[23]Kim I S, Hunn J D, Hashimoto N and Larson D L 2000 J. Nucl. Mater. 280 264
[24]Zhang C H, Jang J, Cho H D and Yang Y T 2009 J. Nucl. Mater. 386 457
[25]Williams D B and Carter C B 2009 Transmission Electron Microscopy (Berlin: Springer) vol 1 chap 20 p 323
[26]Was G S 2007 Fundamentals of Radiation Materials Science (Berlin: Springer) chap 12 p 601
[27]Wakai E, Hishinuma A, Usami K, Kato Y, Takaki S and Abiko K 2000 Mater. Trans. 41 1180
[28]Yabuuchi K, Kuribayashi Y, Nogami S, Kasada R and Hasegawa A 2014 J. Nucl. Mater. 446 142
[29]Singh B N, Golubov S I, Trinkaus H, Serra A, Osetsky Y N and Barashev A V 1997 J. Nucl. Mater. 251 107
[30]Odette G R and Frey D 1979 J. Nucl. Mater. 85 817
[31]Yano K H, Swenson M J, Wu Y and Wharry J P 2017 J. Nucl. Mater. 483 107
[32]Busby J T, Hash M C and Was G S 2005 J. Nucl. Mater. 336 267
[33]Lucas G E 1993 J. Nucl. Mater. 206 287
[34]Fell M and Murphhy S M 1990 J. Nucl. Mater. 172 1
[35]Yang L, Zu X T, Gao F and Peng S M 2010 Physica B 405 1754
Related articles from Frontiers Journals
[1] Si-Yuan Chen, Xin Yu, Wu Lu, Shuai Yao, Xiao-Long Li, Xin Wang, Mo-Han Liu, Shan-Xue Xi, Li-Bin Wang, Jing Sun, Cheng-Fa He, Qi Guo. Effects of Total-Ionizing-Dose Irradiation on Single-Event Burnout for Commercial Enhancement-Mode AlGaN/GaN High-Electron Mobility Transistors[J]. Chin. Phys. Lett., 2020, 37(4): 056102
[2] Meng-Han Wang, Jun-Le Qu, Ming Zhu. Partially Overlapped Dual Laser Beams to Reduce Ablation Craters[J]. Chin. Phys. Lett., 2020, 37(1): 056102
[3] Yi Wang, Wensheng Lai, Jiahao Li. An Incremental Model for Defect Production upon Cascade Overlapping[J]. Chin. Phys. Lett., 2020, 37(1): 056102
[4] Yan-Nan Xu, Jin-Shun Bi, Gao-Bo Xu, Bo Li, Kai Xi, Ming Liu, Hai-Bin Wang, Li Luo. Total Ionization Dose Effects on Charge Storage Capability of Al$_{2}$O$_{3}$/HfO$_{2}$/Al$_{2}$O$_{3}$-Based Charge Trapping Memory Cell[J]. Chin. Phys. Lett., 2018, 35(11): 056102
[5] Yi-Tao Yang, Chong-Hong Zhang, Chang-Hao Su, Zhao-Nan Ding, Yin Song, Yu-Guang Chen. Aligned Elongation of Ag Nanoparticles Embedded in Silica Irradiated with High Energy Ni Ions[J]. Chin. Phys. Lett., 2018, 35(9): 056102
[6] Pei Li, Chao-Hui He, Gang Guo, Hong-Xia Guo, Feng-Qi Zhang, Jin-Xin Zhang, Shu-Ting Shi. Heavy Ion and Laser Microbeam Induced Current Transients in SiGe Heterojunction Bipolar Transistor[J]. Chin. Phys. Lett., 2017, 34(10): 056102
[7] Meng-Ying Zhang, Zhi-Yuan Hu, Zheng-Xuan Zhang, Shuang Fan, Li-Hua Dai, Xiao-Nian Liu, Lei Song. Total Ionizing Dose Response of Different Length Devices in 0.13μm Partially Depleted Silicon-on-Insulator Technology[J]. Chin. Phys. Lett., 2017, 34(8): 056102
[8] Ning Gao, Fei Gao, Zhi-Guang Wang. Anisotropic Migration of Defects under Strain Effect in BCC Iron[J]. Chin. Phys. Lett., 2017, 34(7): 056102
[9] Ting-Jian Dong, Cui-Hua Rong, Jia-Chang Liang, Bo Liu, Xiao-Yong Zhao, Dong-Yan Chen, Bin Zhang, Hao Wang, Hai-Bo Li, Shi-Gui Zhang, Yu-Ping Jiang, Bing Luo, Xiao-Wen Zhou, Tao Wang, Xiao Yu, Xiao-Yun Le. Hydrodynamic Effects on Surface Morphology Evolution of Titanium Alloy under Intense Pulsed Ion Beam Irradiation[J]. Chin. Phys. Lett., 2017, 34(5): 056102
[10] Dong Wang, Ning Gao, W. Setyawan, R. J. Kurtz, Zhi-Guang Wang, Xing Gao, Wen-Hao He, Li-Long Pang. Effect of Strain Field on Threshold Displacement Energy of Tungsten Studied by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2016, 33(09): 056102
[11] Shehla H., Ali A. Zongo S. Javed I. Ishaq A. Khizar H. Naseem S. Maaza M.. Fabrication of Amorphous Silver Nanowires by Helium Ion Beam Irradiation[J]. Chin. Phys. Lett., 2015, 32(09): 056102
[12] LI Pei, GUO Hong-Xia, GUO Qi, ZHANG Jin-Xin, WEI Ying,. Laser-Induced Single Event Transients in Local Oxidation of Silicon and Deep Trench Isolation Silicon-Germanium Heterojunction Bipolar Transistors[J]. Chin. Phys. Lett., 2015, 32(08): 056102
[13] WANG Hai-Jiao, LI Yu-Dong, GUO Qi, MA Li-Ya, WEN Lin, WANG Bo. Room-Temperature Annealing of 1 MeV Electron Irradiated Lattice Matched In0.53Ga0.47As/InP Multiple Quantum Wells[J]. Chin. Phys. Lett., 2015, 32(5): 056102
[14] WANG Kun, QI Qiang, CHENG Gui-Jun, SHI Li-Qun. Microstructure and Mechanical Properties of Ti3SiC2 Irradiated by Carbon Ions[J]. Chin. Phys. Lett., 2014, 31(07): 056102
[15] PENG Chao, ZHANG Zheng-Xuan, HU Zhi-Yuan, HUANG Hui-Xiang, NING Bing-Xu, BI Da-Wei. Enhanced Radiation Sensitivity in Short-Channel Partially Depleted Silicon-on-Insulator n-Type Metal-Oxide-Semiconductor Field Effect Transistors[J]. Chin. Phys. Lett., 2013, 30(9): 056102
Viewed
Full text


Abstract