CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Hardening of an ODS Ferritic Steel after Helium Implantation and Thermal Annealing |
Chang-Hao Su1,2, Chong-Hong Zhang1**, Yi-Tao Yang1, Zhao-Nan Ding1, Yu-Guang Chen1,2, Akihiko Kimura3 |
1Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 2University of Chinese Academy of Sciences, Beijing 100049 3Institute of Advanced Energy, Kyoto University, Kyoto 611-0011, Japan
|
|
Cite this article: |
Chang-Hao Su, Chong-Hong Zhang, Yi-Tao Yang et al 2018 Chin. Phys. Lett. 35 056102 |
|
|
Abstract Specimens of an oxide dispersion strengthened (ODS) ferritic steel (15Cr-4Al-0.6Zr-0.1Ti) are implanted with multiple-energy He ions at room temperature to create a damage plateau of 0.4 dpa for the average (corresponding to an He concentration of about 7000 appm) from the near surface to a depth about 1 μm. The specimen is subsequently thermally annealed at 800$^{\circ}\!$C for 1 h in a vacuum so that simple defects can be formed in the as-implanted state that has undergone significant recombination, meanwhile helium bubbles at nano-scale are formed. Hardness of the specimens are tested with the nano-indentation technique. A hardening by 25% is observed. Microstructures of the specimen after irradiation/annealing are investigated with transmission electron microscopy. Helium bubbles are generally located at dislocations and grain boundaries. Using the dispersed barrier strength model, the strength factor of helium bubbles in the ODS ferritic steel is estimated to be between 0.1 and 0.26, which is close to that of helium bubbles in austenitic steels.
|
|
Received: 22 December 2017
Published: 30 April 2018
|
|
PACS: |
61.80.-x
|
(Physical radiation effects, radiation damage)
|
|
61.82.Bg
|
(Metals and alloys)
|
|
81.40.Cd
|
(Solid solution hardening, precipitation hardening, and dispersion hardening; aging)
|
|
61.72.Ff
|
(Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.))
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No U1532262, and the National Magnetic Confinement Fusion Program of China under Grant No 2011GB108003. |
|
|
[1] | Zinkle S J and Busby J T 2009 Mater. Today 12 12 | [2] | Romanoski G R, Snead L L, Klueh R L and Hoelzer D T 2000 J. Nucl. Mater. 283 642 | [3] | Yvon P and Carré F 2009 J. Nucl. Mater. 385 217 | [4] | Ukai S, Nishida T, Okada H and Fujiwara M 1997 J. Nucl. Sci. Technol. 34 256 | [5] | Mansur L K, Rowcliffe A F, Nanstad R K, Zinkle S J, Corwin W R and Stoller R E 2004 J. Nucl. Mater. 329 166 | [6] | Yuan D Q, Zheng Y N, Zuo Y, Fan P, Zhou D M, Zhang Q L, Ma X Q, Cui B Q, Chen L H, Jiang W S, Wu Y C, Huang Q Y, Peng L, Cao X Z, Wang B Y, Wei L and Yun S H 2014 Chin. Phys. Lett. 31 046101 | [7] | Fave L, Pouchon M A, Dobeli M, Borchers M S and Kimura A 2014 J. Nucl. Mater. 445 235 | [8] | Nakai R, Yabuuchi K, Nogami S and Hasegawa A 2016 J. Nucl. Mater. 471 233 | [9] | Yabuuchi K, Saito M, Kasada R and Kimura A 2011 J. Nucl. Mater. 414 498 | [10] | Dou P, Kimura A, Kasada R, Okuda R, Inoue M, Ukai S, Ohnuki S, Fujisawa T and Abe F 2014 J. Nucl. Mater. 444 441 | [11] | Ziegler J F, Biersack J P and Littmark U 1984 Stopping Range Ions Solids (New York: Pergamon) vol 1 | [12] | Zhang H Q, Zhang C H, Yang Y T, Meng Y C, Jang J and Kimura A 2014 J. Nucl. Mater. 455 349 | [13] | Singh B N and Trinkaus H 1992 J. Nucl. Mater. 186 153 | [14] | Li X and Bhushan B 2002 Mater. Charact. 48 11 | [15] | Zhang Y, Zhang C H, Zhou L H, Li B S and Yang Y T 2010 Acta Phys. Sin. 59 4130 (in Chinese) | [16] | Pharr G M, Herbert E G and Gao Y 2010 Annu. Rev. Mater. Res. 40 271 | [17] | Nix W D and Gao H 1998 J. Mech. Phys. Solids 46 411 | [18] | Fu Z Y, Liu P P, Wan F R and Zhan Q 2015 Fusion Eng. Des. 91 73 | [19] | Kiener D 2012 J. Mater. Res. 27 2724 | [20] | Kasada R, Takayama Y, Yabuuchi K and Kimura A 2011 Fusion Eng. Des. 86 2658 | [21] | Bhattacharya A, Meslin E, Henry J, Pareige C, Décamps B, Genevois C and Brimbal D 2014 Acta Mater. 78 394 | [22] | Arakawa K, Hatanaka M, Mori H and Ono K 2004 J. Nucl. Mater. 329 1194 | [23] | Kim I S, Hunn J D, Hashimoto N and Larson D L 2000 J. Nucl. Mater. 280 264 | [24] | Zhang C H, Jang J, Cho H D and Yang Y T 2009 J. Nucl. Mater. 386 457 | [25] | Williams D B and Carter C B 2009 Transmission Electron Microscopy (Berlin: Springer) vol 1 chap 20 p 323 | [26] | Was G S 2007 Fundamentals of Radiation Materials Science (Berlin: Springer) chap 12 p 601 | [27] | Wakai E, Hishinuma A, Usami K, Kato Y, Takaki S and Abiko K 2000 Mater. Trans. 41 1180 | [28] | Yabuuchi K, Kuribayashi Y, Nogami S, Kasada R and Hasegawa A 2014 J. Nucl. Mater. 446 142 | [29] | Singh B N, Golubov S I, Trinkaus H, Serra A, Osetsky Y N and Barashev A V 1997 J. Nucl. Mater. 251 107 | [30] | Odette G R and Frey D 1979 J. Nucl. Mater. 85 817 | [31] | Yano K H, Swenson M J, Wu Y and Wharry J P 2017 J. Nucl. Mater. 483 107 | [32] | Busby J T, Hash M C and Was G S 2005 J. Nucl. Mater. 336 267 | [33] | Lucas G E 1993 J. Nucl. Mater. 206 287 | [34] | Fell M and Murphhy S M 1990 J. Nucl. Mater. 172 1 | [35] | Yang L, Zu X T, Gao F and Peng S M 2010 Physica B 405 1754 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|