Chin. Phys. Lett.  2018, Vol. 35 Issue (4): 040301    DOI: 10.1088/0256-307X/35/4/040301
GENERAL |
Realization of Quantum Maxwell's Demon with Solid-State Spins
W.-B. Wang1, X.-Y. Chang1, F. Wang1, P.-Y. Hou1, Y.-Y. Huang1, W.-G. Zhang1, X.-L. Ouyang1, X.-Z. Huang1, Z.-Y. Zhang2, H.-Y. Wang1, L. He1, L.-M. Duan1,2**
1Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084
2Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
Cite this article:   
W.-B. Wang, X.-Y. Chang, F. Wang et al  2018 Chin. Phys. Lett. 35 040301
Download: PDF(1703KB)   PDF(mobile)(1693KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report experimental realization of a quantum version of Maxwell's demon using solid state spins where the information acquiring and feedback operations by the demon are achieved through conditional quantum gates. A unique feature of this implementation is that the demon can start in a quantum superposition state or in an entangled state with an ancilla observer. Through quantum state tomography, we measure the entropy in the system, demon, and the ancilla, showing the influence of coherence and entanglement on the result. A quantum implementation of Maxwell's demon adds more controllability to this paradoxical thermal machine and may find applications in quantum thermodynamics involving microscopic systems.
Received: 09 March 2018      Published: 17 March 2018
PACS:  03.67.-a (Quantum information)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
Fund: Supported by the Ministry of Education of China, and the National Key Research and Development Program of China under Grant No 2016YFA0301902.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/4/040301       OR      https://cpl.iphy.ac.cn/Y2018/V35/I4/040301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
W.-B. Wang
X.-Y. Chang
F. Wang
P.-Y. Hou
Y.-Y. Huang
W.-G. Zhang
X.-L. Ouyang
X.-Z. Huang
Z.-Y. Zhang
H.-Y. Wang
L. He
L.-M. Duan
[1]Maruyama K, Nori F and Vedral V 2009 Rev. Mod. Phys. 81 1
[2]Landauer R 1961 IBM J. Res. Dev. 5 183
[3]Bennett C 1982 Int. J. Theor. Phys. 21 905
[4]Zurek W H 1984 Nato Sci. Ser. B 135 151 (ed Moore G T and Scully M O, Plenum Press)
[5]Zurek W H 1989 Nature 341 119
[6]Lloyd S 1997 Phys. Rev. A 56 3374
[7]Vedral V 2000 Proc. R. Soc. London Ser. A 456 969
[8]Kim S, Sagawa T, De Liberato S and Ueda M 2011 Phys. Rev. Lett. 106 70401
[9]Scully M O, Zubairy M S, Agarwal G S and Walther H 2003 Science 299 862
[10]Serreli V, Lee C F, Kay E R and Leigh D A 2007 Nature 445 523
[11]Raizen M G 2009 Science 324 1403
[12]Toyabe S, Sagawa T, Ueda M, Muneyuki E and Sano M 2010 Nat. Phys. 6 988
[13]Berut A, Arakelyan A, Petrosyan A et al 2012 Nature 483 187
[14]Koski J V, Maisi V F, Sagawa T and Pekola J P 2014 Phys. Rev. Lett. 113 30601
[15]Koski J V, Maisi V F, Pekola J P and Averin D V 2014 Proc. Natl. Acad. Sci. USA 111 13786
[16]Koski J V, Kutvonen A, Khaymovich I M, Ala-Nissila T 2015 Phys. Rev. Lett. 115 260602
[17]Vidrighin M D, Dahlsten O, Barbieri M et al 2016 Phys. Rev. Lett. 116 050401
[18]Elouard C, Herrera-Marti D, Huard B and Auffeves A 2017 Phys. Rev. Lett. 118 260603
[19]Kieu T D 2004 Phys. Rev. Lett. 93 140403
[20]Quan H, Wang Y, Liu Y, Sun C and Nori F 2006 Phys. Rev. Lett. 97 180402
[21]Rio L D, Renner R, Aaberg J, Dahlsten O and Vedral V 2011 Nature 474 61
[22]Masanes L and Oppenheim J A 2017 Nat. Commun. 8 14538
[23]Camati P A, Peterson J P, Batalhao T B et al 2016 Phys. Rev. Lett. 117 240502
[24]Cottet N, Jezouin S, Bretheau L et al 2017 Proc. Natl. Acad. Sci. USA 114 7561
[25]Doherty M W, Manson N B, Delaney P et al 2013 Phys. Rep. 528 1
[26]Childress L, Walsworth R and M Lukin 2014 Phys. Today 67 38
[27]Jelezko F, Gaebel T, Popa I, Gruber A and Wrachtrup J 2004 Phys. Rev. Lett. 92 076401
[28]Neumann P, Mizuochi N, Rempp F et al 2008 Science 320 1326
[29]Jacques V, Neumann P, Beck J et al 2009 Phys. Rev. Lett. 102 057403
[30]Yao N Y, Jiang L, Gorshkov A V et al 2012 Nat. Commun. 3 800
[31]Van d S T, Wang Z H, Blok M S et al 2012 Nature 484 82
[32]Maurer P C and Lukin M D 2012 Science 336 1283
[33]Zu C, Wang W B, He L et al 2014 Nature 514 72
[34]Pfaff W, Hensen B J, Bernien H et al 2014 Science 345 532
[35]Zhao N, Ho S W and Liu R B 2012 Phys. Rev. B 85 115303
[36]Childress L, Gurudev Dutt M V, Taylor J M et al 2006 Science 314 281
[37]Togan E, Dutt M V G, Childress L et al 2007 Science 316 1312
[38]Robledo L, Bernien H, Toeno V D S et al 2011 New J. Phys. 13 025013
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 040301
[2] Sheng-Chen Bai, Yi-Cheng Tang, and Shi-Ju Ran. Unsupervised Recognition of Informative Features via Tensor Network Machine Learning and Quantum Entanglement Variations[J]. Chin. Phys. Lett., 2022, 39(10): 040301
[3] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 040301
[4] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 040301
[5] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 040301
[6] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 040301
[7] Wenjie Jiang, Zhide Lu, and Dong-Ling Deng. Quantum Continual Learning Overcoming Catastrophic Forgetting[J]. Chin. Phys. Lett., 2022, 39(5): 040301
[8] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 040301
[9] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 040301
[10] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 040301
[11] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 040301
[12] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 040301
[13] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 040301
[14] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 040301
[15] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 040301
Viewed
Full text


Abstract