Chin. Phys. Lett.  2018, Vol. 35 Issue (4): 040401    DOI: 10.1088/0256-307X/35/4/040401
GENERAL |
Phase Transition and Quasinormal Modes for Spherical Black Holes in 5D Gauss–Bonnet Gravity
Ming Zhang1,2**, Rui-Hong Yue3**
1Faculty of Science, Xi'an Aeronautical University, Xi'an 710077
2National Joint Engineering Research Center of Special Pump System Technology, Xi'an 710077
3Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou University, Yangzhou 225009
Cite this article:   
Ming Zhang, Rui-Hong Yue 2018 Chin. Phys. Lett. 35 040401
Download: PDF(573KB)   PDF(mobile)(557KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the quasinormal modes (QNMs) of massless scalar perturbations to probe the van der Waals like SBH/LBH phase transition of anti-de Sitter black holes in five-dimensional (5D) Gauss–Bonnet gravity. It is found that the signature of this SBH/LBH phase transition is detected when the slopes of the QNMs frequency change drastically and differently in small and large black holes near the critical point. The obtained results further support that the QNMs can be a dynamic probe to investigate the thermodynamic properties in black holes.
Received: 28 November 2017      Published: 13 March 2018
PACS:  04.50.Kd (Modified theories of gravity)  
  04.70.-s (Physics of black holes)  
  04.25.D- (Numerical relativity)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11647050, 11675139 and 51575420, and the Scientific Research Program Funded by Shaanxi Provincial Education Department under Grant No 16JK1394.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/4/040401       OR      https://cpl.iphy.ac.cn/Y2018/V35/I4/040401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ming Zhang
Rui-Hong Yue
[1]Maldacena J 1999 Int. J. Theor. Phys. 38 1113
Maldacena J 1998 Adv. Theor. Math. Phys. 2 231
[2]Gubser S S, Klebanov I R and Polyakov A M 1998 Phys. Lett. B 428 105
[3]Witten E 1998 Adv. Theor. Math. Phys. 2 253
[4]Kubiznak D and Mann R B 2012 J. High Energy Phys. 1207 033
[5]Gunasekaran S, Mann R B and Kubiznak D 2012 J. High Energy Phys. 1211 110
[6]Hendi S H and Vahidinia M H 2013 Phys. Rev. D 88 084045
[7]Zhao R, Zhao H H, Ma M S and Zhang L C 2013 Eur. Phys. J. C 73 2645
[8]Zou D C, Zhang S J and Wang B 2014 Phys. Rev. D 89 044002
[9]Dehghani M H, Kamrani S and Sheykhi A 2014 Phys. Rev. D 90 104020
[10]Hennigar R A, Brenna W G and Mann R B 2015 J. High Energy Phys. 1507 077
[11]Zhang L C, Ma M S, Zhao H H and Zhao R 2014 Eur. Phys. J. C 74 3052
[12]Altamirano N, Kubiznak D, Mann R B and Sherkatghanad Z 2014 Galaxies 2 89
[13]Wei S W and Liu Y X 2015 Phys. Rev. Lett. 115 111302
Wei S W and Liu Y X 2016 Phys. Rev. Lett. 116 169903
[14]Xu W and Zhao L 2014 Phys. Lett. B 736 214
[15]Sadeghi J, Pourhassan B and Rostami M 2016 Phys. Rev. D 94 064006
[16]Hansen D, Kubiznak D and Mann R B 2017 J. High Energy Phys. 1701 047
[17]Zeng X X and Li L F 2016 Adv. High Energy Phys. 2016 6153435
[18]Hendi S H, Panah E B, Panahiyan S and Talezadeh M S 2017 Eur. Phys. J. C 77 133
[19]Xu J, Cao L M and Hu Y P 2015 Phys. Rev. D 91 124033
[20]Zou D C, Yue R H and Zhang M 2017 Eur. Phys. J. C 77 256
[21]Hendi S H, Mann R B, Panahiyan S and Panah E B 2017 Phys. Rev. D 95 021501
[22]Rajagopal A, Kubizňák D and Mann R B 2014 Phys. Lett. B 737 277
[23]Gubser S S and Mitra I 2001 J. High Energy Phys. 0108 018
[24]Mahapatra S 2016 J. High Energy Phys. 1604 142
[25]Rao X P, Wang B and Yang G H 2007 Phys. Lett. B 649 472
[26]He X, Wang B, Cai R G and Lin C Y 2010 Phys. Lett. B 688 230
[27]Berti E and Cardoso V 2008 Phys. Rev. D 77 087501
[28]Shen J, Wang B, Lin C Y, Cai R G and Su R K 2007 J. High Energy Phys. 0707 037
[29]Koutsoumbas G, Musiri S, Papantonopoulos E and Siopsis G 2006 J. High Energy Phys. 0610 006
[30]Zou D C, Liu Y, Zhang C Y and Wang B 2016 Europhys. Lett. 116 40005
[31]Zou D C, Liu Y and Yue R H 2017 Eur. Phys. J. C 77 365
[32]Zangeneh M K, Wang B, Sheykhi A and Tang Z Y 2017 Phys. Lett. B 771 257
[33]Liu Y, Zou D C and Wang B 2014 J. High Energy Phys. 1409 179
[34]Chabab M, El Moumni H, Iraoui S and Masmar K 2016 Eur. Phys. J. C 76 676
[35]Horava P and Witten E 1996 Nucl. Phys. B 475 94
[36]Lukas A, Ovrut B A and Waldram D 1999 Phys. Rev. D 60 086001
[37]Randall L and Sundrum R 1999 Phys. Rev. Lett. 83 3370
[38]Randall L and Sundrum R 1999 Phys. Rev. Lett. 83 4690
[39]Lanczos C 1938 Ann. Math. 39 842
[40]Lovelock D 1971 J. Math. Phys. 12 498
[41]Zou D C, Yang Z Y, Yue R H and Yu T Y 2011 Chin. Phys. B 20 100403
[42]Yue R H, Zou D C, Yu T Y and Yang Z Y 2011 Chin. Phys. B 20 050401
[43]Zhou K, Yang Z Y, Zou D C and Yue R H 2012 Chin. Phys. B 21 020401
[44]Boulware D G and Deser S 1985 Phys. Rev. Lett. 55 2656
[45]Izumi K 2014 Phys. Rev. D 90 044037
[46]Wheeler J T 1986 Nucl. Phys. B 273 732
[47]Xu W, Xu H and Zhao L 2014 Eur. Phys. J. C 74 2970
[48]Zou D C, Liu Y and Wang B 2014 Phys. Rev. D 90 044063
[49]Cai R G, Cao L M, Li L and Yang R Q 2013 J. High Energy Phys. 1309 005
[50]Wei S W and Liu Y X 2014 Phys. Rev. D 90 044057
[51]He S, Li L F and Zeng X X 2017 Nucl. Phys. B 915 243
[52]Bruno L 1983 Thermodynamics and Introductory Statistical Mechanics (New York: Wiley Online Library) p 119
[53]Stanley H E 1987 Introduction to Phase Transitions and Critical Phenomena (Oxford: Oxford University Press)
[54]Nieuwenhuizen T M 1997 Phys. Rev. Lett. 79 1317
[55]Zemansky M W and Dittman R H 1997 Heat and Thermodynamics: an Intermediate Textbook (New York: McGraw-Hill)
Related articles from Frontiers Journals
[1] P. H. R. S. Moraes, Pradyumn Kumar Sahoo, Shreyas Sunil Kulkarni, Shivaank Agarwal. An Exponential Shape Function for Wormholes in Modified Gravity[J]. Chin. Phys. Lett., 2019, 36(12): 040401
[2] Chi-Kun Ding. Gravitational Perturbations in Einstein Aether Black Hole Spacetime[J]. Chin. Phys. Lett., 2018, 35(10): 040401
[3] Safiqul Islam, Shantanu Basu. Magnetic Field of a Compact Spherical Star under f(R,T) Gravity[J]. Chin. Phys. Lett., 2018, 35(9): 040401
[4] ZHANG Ming, YUE Rui-Hong, YANG Zhan-Ying. Critical Behavior of Black Holes in an Einstein–Maxwell Gravity with a Conformal Anomaly[J]. Chin. Phys. Lett., 2015, 32(02): 040401
[5] M. Farasat Shamir, Adil Jhangeer, and Akhlaq Ahmad Bhatti. Conserved Quantities in f(R) Gravity via Noether Symmetry[J]. Chin. Phys. Lett., 2012, 29(8): 040401
[6] Gamal G. L. Nashed*. Spherically Symmetric Solutions on a Non-Trivial Frame in f(T) Theories of Gravity[J]. Chin. Phys. Lett., 2012, 29(5): 040401
[7] ZHANG Tao, WU Pu-Xun, YU Hong-Wei, ** . Gödel-Type Universes in f(R) Gravity with an Arbitrary Coupling between Matter and Geometry[J]. Chin. Phys. Lett., 2011, 28(12): 040401
[8] AO Xi-Chen**, LI Xin-Zhou, XI Ping . Cosmological Dynamics of de Sitter Gravity[J]. Chin. Phys. Lett., 2011, 28(4): 040401
[9] Arbab I. Arbab. Viscous Dark Energy Models with Variable G and Λ[J]. Chin. Phys. Lett., 2008, 25(10): 040401
[10] ZHOU Xiao-Ying, HE Jian-Hua. Gravitational Waves in f(R) Gravity[J]. Chin. Phys. Lett., 2014, 31(09): 040401
Viewed
Full text


Abstract