CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Influence of Pressure on the Annealing Process of $\beta$-Ca$_{2}$SiO$_{4}$(C$_{2}$S) in Portland Cement |
Yun-Peng Gao, Wan-Qing Dong, Gong Li**, Ri-Ping Liu |
State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004
|
|
Cite this article: |
Yun-Peng Gao, Wan-Qing Dong, Gong Li et al 2018 Chin. Phys. Lett. 35 036103 |
|
|
Abstract Portland cement is the most common type of cement in general use around the world as a basic ingredient of concrete, mortar, stucco, and non-speciality grout. Dicalcium silicate (Ca$_{2}$SiO$_{4})$ is the primary constituent of a number of different types of cement. The $\beta$-Ca$_{2}$SiO$_{4}$ phase is metastable at room temperature and will transform into $\gamma$-Ca$_{2}$SiO$_{4}$ at 663 K. In this work, Portland cement is annealed at a temperature of 950 K under pressures in the range of 0–5.5 GPa. The high pressure experiments are carried out in an apparatus with six anvil tops. The effect of high pressure on the obtaining nano-size $\beta$-Ca$_{2}$SiO$_{4}$(C$_{2}$S) process is investigated by x-ray diffraction and transmission electron microscopy. Experimental results show that the grain size of the C$_{2}$S decreases with the increase of pressure. The volume fraction of the C$_{2}$S phase increases with the pressure as the pressure is below 3 GPa, and then decreases ($P>3$ GPa). The nano-effect is very important to the stabilization of $\beta$-Ca$_{2}$SiO$_{4}$. The mechanism for the effects of the high pressure on the annealing process of the Portland cement is also discussed.
|
|
Received: 20 October 2017
Published: 25 February 2018
|
|
PACS: |
61.50.-f
|
(Structure of bulk crystals)
|
|
61.50.Ks
|
(Crystallographic aspects of phase transformations; pressure effects)
|
|
81.30.Hd
|
(Constant-composition solid-solid phase transformations: polymorphic, massive, and order-disorder)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 11674274. |
|
|
[1] | Rayment D L 1986 Cem. Concr. Res. 16 341 | [2] | Mcarthur H and Spalding D 2004 Engineering Materials Science: Properties, Uses, Degradation and Remediation (Chichester, U.K.: Horwood Publ.) | [3] | Kosmatka S H and Panarese W C 1988 Design and Control of Concrete Mixtures 13th edn (Portland Cement Association, Skokie, Illinois) | [4] | Chen J J, Thomas J J, Taylor H F W and Jennings H M 2004 Cem. Concr. Res. 34 1499 | [5] | Barret P and Ménétrier D 1980 Cem. Concr. Res. 10 521 | [6] | Barret P, Ménétrier D and Bertrandie D 1983 Cem. Concr. Res. 13 728 | [7] | Damidot D, Nonat A and Barret P 1990 J. Am. Ceram. Soc. 73 3319 | [8] | Garrault-Gauffinet S and Nonat A 1999 J. Cryst. Growth 200 565 | [9] | And S G and Nonat A 2001 Langmuir 17 8131 | [10] | Livingston R A, Schweitzer J S Rolfs C, Becker H W and Kubsky S 2001 J. Mater. Res. 16 687 | [11] | Allen A J, Mclaughlin J C, Neumann D A and Livingston R A 2004 J. Mater. Res. 19 3242 | [12] | Plank J and Meyer L 2015 J. Sustainable Cement-Based Mater. 4 164 | [13] | Li G, Wang Y Y, Liaw P K, Li Y C and Liu R P 2012 Phys. Rev. Lett. 109 125501 | [14] | Yu P F, Zhang L J, Ning J L, Ma M Z, Zhang X Y, Li Y C, Liaw P K, Li G and Liu R P 2017 Materials Letters | [15] | Wang W K, Iwasaki H and Fukamichi K 1980 J. Mater. Sci. 15 2701 | [16] | Wang W K, Wang S T, Chen H and He S A 1984 Acta Phys. Sin. 33 1448 (in Chinese) | [17] | Lu S H, Wang Z Q, Wu S C, Lok C K, Quinn J, Li Y S, Tian, D Jona F and Marcus P M 1988 Phys. Rev. B 37 4296 | [18] | Li Y C, Li G, L C, Li X D and Liu J 2015 Chin. Phys. Lett. 32 016101 | [19] | Jiang X X, Feng S Q and Li H N 2017 Chin. Phys. B 26 046301 | [20] | Li G, Li J H, Wang W K and Liu R P 2010 Chin. Phys. B 19 096202 | [21] | Ménétrier D, Jawed I, Sun T S and Skalny J 1979 Cem. Concr. Res. 9 473 | [22] | Garrault S, Finot E, Lesniewska E and Nonat A 2005 Mater. Struct. 38 435 | [23] | Juenger M C G, Monteiro P J M, Gartner E M and Denbeaux G P 2005 Cem. Concr. Res. 35 19 | [24] | Silva D A and Monteiro P J M 2005 Cem. Concr. Res. 35 351 | [25] | Stein H N 1972 Cem. Concr. Res. 2 167 | [26] | Li X D, Li Y C and Cheng H 2016 Chin. Phys. Lett. 33 096104 | [27] | Warren E 1967 X-ray Diffraction (Massachusetts: Addison Wesley) p 41 | [28] | Kim Y M and Hong S H 2004 J. Am. Ceram. Soc. 87 900 | [29] | Shen T D and Schwarz R B 1999 Appl. Phys. Lett. 75 49 | [30] | Porter D and Easterling K 1981 Phase Transformation in Metals and Alloys (New York: Van Nostrand Reinhoid) p 263 | [31] | Hillig W B and Turnbull D 1956 J. Chem. Phys. 24 914 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|