Chin. Phys. Lett.  2018, Vol. 35 Issue (3): 036103    DOI: 10.1088/0256-307X/35/3/036103
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Influence of Pressure on the Annealing Process of $\beta$-Ca$_{2}$SiO$_{4}$(C$_{2}$S) in Portland Cement
Yun-Peng Gao, Wan-Qing Dong, Gong Li**, Ri-Ping Liu
State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004
Cite this article:   
Yun-Peng Gao, Wan-Qing Dong, Gong Li et al  2018 Chin. Phys. Lett. 35 036103
Download: PDF(1677KB)   PDF(mobile)(1671KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Portland cement is the most common type of cement in general use around the world as a basic ingredient of concrete, mortar, stucco, and non-speciality grout. Dicalcium silicate (Ca$_{2}$SiO$_{4})$ is the primary constituent of a number of different types of cement. The $\beta$-Ca$_{2}$SiO$_{4}$ phase is metastable at room temperature and will transform into $\gamma$-Ca$_{2}$SiO$_{4}$ at 663 K. In this work, Portland cement is annealed at a temperature of 950 K under pressures in the range of 0–5.5 GPa. The high pressure experiments are carried out in an apparatus with six anvil tops. The effect of high pressure on the obtaining nano-size $\beta$-Ca$_{2}$SiO$_{4}$(C$_{2}$S) process is investigated by x-ray diffraction and transmission electron microscopy. Experimental results show that the grain size of the C$_{2}$S decreases with the increase of pressure. The volume fraction of the C$_{2}$S phase increases with the pressure as the pressure is below 3 GPa, and then decreases ($P>3$ GPa). The nano-effect is very important to the stabilization of $\beta$-Ca$_{2}$SiO$_{4}$. The mechanism for the effects of the high pressure on the annealing process of the Portland cement is also discussed.
Received: 20 October 2017      Published: 25 February 2018
PACS:  61.50.-f (Structure of bulk crystals)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  81.30.Hd (Constant-composition solid-solid phase transformations: polymorphic, massive, and order-disorder)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11674274.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/3/036103       OR      https://cpl.iphy.ac.cn/Y2018/V35/I3/036103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yun-Peng Gao
Wan-Qing Dong
Gong Li
Ri-Ping Liu
[1]Rayment D L 1986 Cem. Concr. Res. 16 341
[2]Mcarthur H and Spalding D 2004 Engineering Materials Science: Properties, Uses, Degradation and Remediation (Chichester, U.K.: Horwood Publ.)
[3]Kosmatka S H and Panarese W C 1988 Design and Control of Concrete Mixtures 13th edn (Portland Cement Association, Skokie, Illinois)
[4]Chen J J, Thomas J J, Taylor H F W and Jennings H M 2004 Cem. Concr. Res. 34 1499
[5]Barret P and Ménétrier D 1980 Cem. Concr. Res. 10 521
[6]Barret P, Ménétrier D and Bertrandie D 1983 Cem. Concr. Res. 13 728
[7]Damidot D, Nonat A and Barret P 1990 J. Am. Ceram. Soc. 73 3319
[8]Garrault-Gauffinet S and Nonat A 1999 J. Cryst. Growth 200 565
[9]And S G and Nonat A 2001 Langmuir 17 8131
[10]Livingston R A, Schweitzer J S Rolfs C, Becker H W and Kubsky S 2001 J. Mater. Res. 16 687
[11]Allen A J, Mclaughlin J C, Neumann D A and Livingston R A 2004 J. Mater. Res. 19 3242
[12]Plank J and Meyer L 2015 J. Sustainable Cement-Based Mater. 4 164
[13]Li G, Wang Y Y, Liaw P K, Li Y C and Liu R P 2012 Phys. Rev. Lett. 109 125501
[14]Yu P F, Zhang L J, Ning J L, Ma M Z, Zhang X Y, Li Y C, Liaw P K, Li G and Liu R P 2017 Materials Letters
[15]Wang W K, Iwasaki H and Fukamichi K 1980 J. Mater. Sci. 15 2701
[16]Wang W K, Wang S T, Chen H and He S A 1984 Acta Phys. Sin. 33 1448 (in Chinese)
[17]Lu S H, Wang Z Q, Wu S C, Lok C K, Quinn J, Li Y S, Tian, D Jona F and Marcus P M 1988 Phys. Rev. B 37 4296
[18]Li Y C, Li G, L C, Li X D and Liu J 2015 Chin. Phys. Lett. 32 016101
[19]Jiang X X, Feng S Q and Li H N 2017 Chin. Phys. B 26 046301
[20]Li G, Li J H, Wang W K and Liu R P 2010 Chin. Phys. B 19 096202
[21]Ménétrier D, Jawed I, Sun T S and Skalny J 1979 Cem. Concr. Res. 9 473
[22]Garrault S, Finot E, Lesniewska E and Nonat A 2005 Mater. Struct. 38 435
[23]Juenger M C G, Monteiro P J M, Gartner E M and Denbeaux G P 2005 Cem. Concr. Res. 35 19
[24]Silva D A and Monteiro P J M 2005 Cem. Concr. Res. 35 351
[25]Stein H N 1972 Cem. Concr. Res. 2 167
[26]Li X D, Li Y C and Cheng H 2016 Chin. Phys. Lett. 33 096104
[27]Warren E 1967 X-ray Diffraction (Massachusetts: Addison Wesley) p 41
[28]Kim Y M and Hong S H 2004 J. Am. Ceram. Soc. 87 900
[29]Shen T D and Schwarz R B 1999 Appl. Phys. Lett. 75 49
[30]Porter D and Easterling K 1981 Phase Transformation in Metals and Alloys (New York: Van Nostrand Reinhoid) p 263
[31]Hillig W B and Turnbull D 1956 J. Chem. Phys. 24 914
Related articles from Frontiers Journals
[1] Cong Liu, Junjie Wang, Xin Deng, Xiaomeng Wang, Chris J. Pickard, Ravit Helled, Zhongqing Wu, Hui-Tian Wang, Dingyu Xing, and Jian Sun. Partially Diffusive Helium-Silica Compound under High Pressure[J]. Chin. Phys. Lett., 2022, 39(7): 036103
[2] Guoxiong Tang, Libin Wen, Hui Xing, Wenjie Liu, Jin Peng, Yu Wang, Yupeng Li, Baijiang Lv, Yusen Yang, Chao Yao, Yueshen Wu, Hong Sun, Zhu-An Xu, Zhiqiang Mao, and Ying Liu. Structural Domain Imaging and Direct Determination of Crystallographic Orientation in Noncentrosymmetric Ca$_{3}$Ru$_{2}$O$_{7}$ Using Polarized Light Reflectance[J]. Chin. Phys. Lett., 2020, 37(10): 036103
[3] Sheng Jiang, Jing Liu, Xiao-Dong Li, Yan-Chun Li, Shang-Ming He, Ji-Chao Zhang. High-Pressure Phase Transitions of Cubic Y$_{2}$O$_{3}$ under High Pressures by In-situ Synchrotron X-Ray Diffraction[J]. Chin. Phys. Lett., 2019, 36(4): 036103
[4] Jun-Ying Zhang, Shu-Juan Han, Lin-Tao Liu, Qian Yao, Wei-Min Dong, Jing Li. Crystal Structure and Judd–Ofelt Analysis of Er$^{3+}$ Doped LuAl$_{3}$(BO$_{3}$)$_{4}$ Crystal[J]. Chin. Phys. Lett., 2018, 35(9): 036103
[5] Zhi-Dong Han, Heng-Wei Luan, Shao-Fan Zhao, Na Chen, Rui-Xuan Peng, Yang Shao, Ke-Fu Yao. Microstructures and Mechanical Properties of AlCrFeNiMo$_{0.5}$Ti$_{x}$ High Entropy Alloys[J]. Chin. Phys. Lett., 2018, 35(3): 036103
[6] Hu Cheng, Yan-Chun Li, Gong Li, Xiao-Dong Li. Structural Phase Transitions of ZnTe under High Pressure Using Experiments and Calculations[J]. Chin. Phys. Lett., 2016, 33(09): 036103
[7] Yan-Chun Hu, Ya-Wen Cui, Xian-Wei Wang, Yi-Pu Liu. Effect of Quench Treatment on Fe/Mo Order and Magnetic Properties of Double Perovskite Sr$_{2}$FeMoO$_{6}$[J]. Chin. Phys. Lett., 2016, 33(02): 036103
[8] LI Yan-Chun, LI Gong, LIN Chuan-Long, LI Xiao-Dong, LIU Jing. High-Pressure Phase Transitions of PbTe Using the First-Principles Calculations[J]. Chin. Phys. Lett., 2015, 32(01): 036103
[9] SHAO Xi. Indication of Low-Energy BC5 Structures[J]. Chin. Phys. Lett., 2010, 27(1): 036103
[10] GAO Feng, JIA Xiao-Peng, MA Hong-An, GUO Wei, LIU Xiao-Bing. Hetero-Epitaxial Diamond Single Crystal Growth on Surface of cBN Single Crystals at High Pressure and High Temperature[J]. Chin. Phys. Lett., 2008, 25(6): 036103
[11] ZHANG Yu-Feng, ZHANG Fan, GAO Qiao-Jun, YU Da-Peng, PENG Xiao-Fu, LIN Zeng-Dong. Synthesis of Nano-Crystalline Diamond Film in Hot Filament Chemical Vapour Deposition by Adding Ar[J]. Chin. Phys. Lett., 2001, 18(2): 036103
[12] ZHANG Fan, ZHANG Yu-Feng, GAO Qiao-Jun, ZHANG Shu-Lin, LIN Ting, PENG Xiao-Fu, LIN Zeng-Dong. Synthesis of Nano-crystalline Diamond Films[J]. Chin. Phys. Lett., 2000, 17(5): 036103
[13] WU Feng, ZHANG Shu-yuan, CHEN Zhi-wen, TAN Shun. Crystallization and Fractal Formation in Annealed Al/a-Ge Bilayer Films[J]. Chin. Phys. Lett., 1997, 14(10): 036103
[14] TAN Qi. Ordering and Reordering of Nanophase FeAl Intermetallics Synthesized by Mechanical Alloying[J]. Chin. Phys. Lett., 1996, 13(11): 036103
Viewed
Full text


Abstract