CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Intrinsic Instability of the Hybrid Halide Perovskite Semiconductor CH$_{3}$NH$_{3}$PbI$_{3}$$^*$ |
Yue-Yu Zhang1, Shiyou Chen2**, Peng Xu1, Hongjun Xiang1, Xin-Gao Gong1**, Aron Walsh3, Su-Huai Wei4 |
1Key Laboratory for Computational Physical Sciences (MOE), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433
2Key Laboratory of Polar Materials and Devices (MOE), East China Normal University, Shanghai 200241
3Center for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Bath BA2 7AY, UK
4Beijing Computational Science Research Center, Beijing 100094 |
|
Cite this article: |
Yue-Yu Zhang, Shiyou Chen, Peng Xu et al 2018 Chin. Phys. Lett. 35 036104 |
|
|
Abstract The organic-inorganic hybrid perovskite CH$_{3}$NH$_{3}$PbI$_{3}$ has attracted significant interest for its high performance in converting solar light into electrical power with an efficiency exceeding 20%. Unfortunately, chemical stability is one major challenge in the development of CH$_{3}$NH$_{3}$PbI$_{3}$ solar cells. It was commonly assumed that moisture or oxygen in the environment causes the poor stability of hybrid halide perovskites, however, here we show from the first-principles calculations that the room-temperature tetragonal phase of CH$_{3}$NH$_{3}$PbI$_{3}$ is thermodynamically unstable with respect to the phase separation into CH$_{3}$NH$_{3}$I + PbI$_{2}$, i.e., the disproportionation is exothermic, independent of the humidity or oxygen in the atmosphere. When the structure is distorted to the low-temperature orthorhombic phase, the energetic cost of separation increases, but remains small. Contributions from vibrational and configurational entropy at room temperature have been considered, but the instability of CH$_{3}$NH$_{3}$PbI$_{3}$ is unchanged. When I is replaced by Br or Cl, Pb by Sn, or the organic cation CH$_{3}$NH$_{3}$ by inorganic Cs, the perovskites become more stable and do not phase-separate spontaneously. Our study highlights that the poor chemical stability is intrinsic to CH$_{3}$NH$_{3}$PbI$_{3}$ and suggests that element-substitution may solve the chemical stability problem in hybrid halide perovskite solar cells.
|
|
Received: 09 February 2018
Published: 25 February 2018
|
|
PACS: |
61.72.J-
|
(Point defects and defect clusters)
|
|
61.50.Ah
|
(Theory of crystal structure, crystal symmetry; calculations and modeling)
|
|
71.20.Nr
|
(Semiconductor compounds)
|
|
71.55.Gs
|
(II-VI semiconductors)
|
|
|
Fund: The work at Fudan University was supported by the Special Funds for Major State Basic Research, National Natural Science Foundation of China (NSFC), and Project of Shanghai Municipality (16520721600). S.C. was supported by NSFC under Grant No 91233121, Shanghai Rising-Star Program (14QA1401500) and CC of ECNU. The work at Bath was supported by the Royal Society, the ERC and EPSRC under Grant Nos EP/M009580/1 and EP/K016288/1. S.H.W. was supported by the National Key Research and Development Program of China under Grant No 2016YFB0700700, and the National Natural Science Foundation of China under Grant Nos 51672023, 11634003 and U1530401. |
|
|
[1] | Liu M, Johnston M B and Snaith H J 2013 Nature 501 395 | [2] | Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K and Grätzel M 2013 Nature 499 316 | [3] | Edri E, Kirmayer S, Mukhopadhyay S, Gartsman K, Hodes G and Cahen D 2014 Nat. Commun. 5 3461 | [4] | Frost J M, Butler K T, Brivio F, Hendon C H, van Schilfgaarde M and Walsh A 2014 Nano Lett. 14 2584 | [5] | Lee M M, Teuscher J, Miyasaka T, Murakami T N and Snaith H J 2012 Science 338 643 | [6] | Marchioro A, Teuscher J, Friedrich D, Kunst M, van de Krol R, Moehl T, Grätzel M and Moser J E 2014 Nat. Photon. 8 250 | [7] | Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S and Sum T C 2013 Science 342 344 | [8] | Kim H S, Lee J W, Yantara N, Boix P P, Kulkarni S A, Mhaisalkar S, Grätzel M and Park N G 2013 Nano Lett. 13 2412 | [9] | Green M A, Ho-Baillie A and Snaith H J 2014 Nat. Photon. 8 506 | [10] | Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y and Yang Y 2014 Science 345 542 | [11] | Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J and Seok S I 2015 Nature 517 476 | [12] | Scandale W, Still D A, Carnera A, Della Mea G, De Salvador D, Milan R, Vomiero A, Baricordi S, Dalpiaz P and Fiorini M 2007 Phys. Rev. Lett. 98 154801 | [13] | Zeng L, Yi Y, Hong C, Liu J, Feng N, Duan X, Kimerling L and Alamariu B 2006 Appl. Phys. Lett. 89 111111 | [14] | Wu X 2004 Sol. Energy 77 803 | [15] | Chirilă A, Buecheler S, Pianezzi F, Bloesch P, Gretener C, Uhl A R, Fella C, Kranz L, Perrenoud J and Seyrling S 2011 Nat. Mater. 10 857 | [16] | Christians J A, Miranda Herrera P A, Kamat P V 2015 J. Am. Chem. Soc. 137 1530 | [17] | Wei Z, Chen H, Yan K and Yang S 2014 Angew. Chem. 126 13455 | [18] | De Wolf S, Holovsky J, Moon S J, Löer P, Niesen B, Ledinsky M, Haug F J, Yum J H and Ballif C 2014 J. Phys. Chem. Lett. 5 1035 | [19] | Lindblad R, Bi D, Park B W, Oscarsson J, Gorgoi M, Siegbahn H, Odelius M, Johansson E M and Rensmo H K 2014 J. Phys. Chem. Lett. 5 648 | [20] | Heo J H, Han H J, Kim D, Ahn T and Im S H 2015 Energy Environ. Sci. 8 1602 | [21] | Yang J, Siempelkamp B D, Liu D and Kelly T L 2015 ACS Nano 9 1955 | [22] | Han Y, Meyer S, Dkhissi Y, Weber K, Pringle J M, Bach U, Spiccia L and Cheng Y B 2015 J. Mater. Chem. A 3 8139 | [23] | Niu G, Li W, Meng F, Wang L, Dong H and Qiu Y 2014 J. Mater. Chem. A 2 705 | [24] | Schoonman J 2015 Chem. Phys. Lett. 619 193 | [25] | Lang L, Yang J H, Liu H R, Xiang H and Gong X 2014 Phys. Lett. A 378 290 | [26] | Umari P, Mosconi E and De Angelis F 2014 Sci. Rep. 4 4467 | [27] | Feng J and Xiao B 2014 J. Phys. Chem. Lett. 5 1278 | [28] | Yin W J, Shi T and Yan Y 2014 Adv. Mater. 26 4653 | [29] | Blöchl P E 1994 Phys. Rev. B 50 17953 | [30] | Kresse G and Hafner J 1994 Phys. Rev. B 49 14251 | [31] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | [32] | Bučko T, Lebègue S, Hafner J and Ángyán J 2013 Phys. Rev. B 87 064110 | [33] | Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106 | [34] | Poglitsch A and Weber D 1983 J. Chem. Phys. 87 5 | [35] | Kawamura Y, Mashiyama H and Hasebe K 2002 J. Phys. Soc. Jpn. 71 1694 | [36] | Agiorgousis M L, Sun Y Y, Zeng H and Zhang S 2014 J. Am. Chem. Soc. 136 14570 | [37] | Wang Y, Gould T, Dobson J F, Zhang H, Yang H, Yao X and Zhao H 2014 Phys. Chem. Chem. Phys. 16 1424 | [38] | Zhong W, Vanderbilt D and Rabe K M 1995 Phys. Rev. B 52 6301 | [39] | Stoumpos C C, Malliakas C D and Kanatzidis M G 2013 Inorg. Chem. 52 9019 | [40] | Leguy A M A, Hu Y, Campoy-Quiles M, Alonso M I, Weber O J, Azarhoosh P, van Schilfgaarde M, Weller M T, Bein T, Nelson J, Docampo P and Barnes P R F 2015 Chem. Mater. 27 3397 | [41] | Yin W J, Shi T and Yan Y 2014 Appl. Phys. Lett. 104 063903 | [42] | Buin A, Pietsch P, Xu J, Voznyy O, Ip A H, Comin R and Sargent E H 2014 Nano Lett. 14 6281 | [43] | Conings B, Drijkoningen J, Gauquelin N, Babayigit A, D'Haen J, D'Olieslaeger L, Ethirajan A, Verbeeck J, Manca J, Mosconi E, De Angelis F and Boyen H G 2015 Adv. Energy Mater. 5 1500477 | [44] | Noh J H, Im S H, Heo J H, Mandal T N and Seok S I 2013 Nano Lett. 13 1764 | [45] | Noel N K, Stranks S D, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A A, Sadhanala A, Eperon G E, Pathak S K, Johnston M B, Petrozza A, Herz L M and Snaith H J 2014 Energy Environ. Sci. 7 3061 | [46] | Shen Q, Ogomi Y, Chang J, Toyoda T, Fujiwara K, Yoshino K, Sato K, Yamazaki K, Akimoto M and Kuga Y 2015 J. Mater. Chem. A 3 9308 | [47] | Han D, Dai C and Chen S 2017 J. Semicond. 38 011006 | [48] | Yin W J, Yang J H, Kang J, Yan Y and Wei S H 2015 J. Mater. Chem. A 3 8926 | [49] | Du M H 2014 J. Mater. Chem. A 2 9091 | [50] | Xu P, Chen S, Xiang H J, Gong X G and Wei S H 2014 Chem. Mater. 26 6068 | [51] | Mounet N and Marzari N 2005 Phys. Rev. B 71 205214 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|