Chin. Phys. Lett.  2018, Vol. 35 Issue (3): 036102    DOI: 10.1088/0256-307X/35/3/036102
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Microstructures and Mechanical Properties of AlCrFeNiMo$_{0.5}$Ti$_{x}$ High Entropy Alloys
Zhi-Dong Han1, Heng-Wei Luan1, Shao-Fan Zhao2, Na Chen1**, Rui-Xuan Peng1, Yang Shao1, Ke-Fu Yao1**
1School of Materials Science and Engineering, Tsinghua University, Beijing 100084
2Qian Xuesen Laboratory of Space Technology, Beijing 100094
Cite this article:   
Zhi-Dong Han, Heng-Wei Luan, Shao-Fan Zhao et al  2018 Chin. Phys. Lett. 35 036102
Download: PDF(3508KB)   PDF(mobile)(3500KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Effects of Ti addition on the microstructures and mechanical properties of AlCrFeNiMo$_{0.5}$Ti$_{x}$ ($x=0$, 0.25, 0.4, 0.5, 0.6, 0.75) high entropy alloys (HEAs) are investigated. All these HEAs of various Ti contents possess dual BCC structures, indicating that Ti addition does not induce the formation of any new phase in these alloys. As Ti addition $x$ varies from 0 to 0.75, the Vickers hardness (HV) of the alloy system increases from 623.7 HV to 766.2 HV, whereas the compressive yield stress firstly increases and then decreases with increasing $x$ above 0.5. Meanwhile, the compressive ductility of the alloy system decreases with Ti addition. The AlCrFeNiMo$_{0.5}$Ti$_{0.6}$ and AlCrFeNiMo$_{0.5}$Ti$_{0.75}$ HEAs become brittle and fracture with very limited plasticity. In the AlCrFeNiMo$_{0.5}$Ti$_{x}$ HEAs, the AlCrFeNiMo$_{0.5}$ HEA possesses the highest compressive fracture strength of 4027 MPa and the largest compressive plastic strain of 27.9%, while the AlCrFeNiMo$_{0.5}$Ti$_{0.5}$ HEA has the highest compressive yield strength of 2229 MPa and a compressive plastic strain of 10.1%. The combination of high strength and large plasticity of the AlCrFeNiMo$_{0.5}$Ti$_{x}$ ($x=0$, 0.25, 0.4, 0.5) HEAs demonstrates that this alloy system is very promising for engineering applications.
Received: 24 October 2017      Published: 25 February 2018
PACS:  61.82.Bg (Metals and alloys)  
  61.50.-f (Structure of bulk crystals)  
  62.20.-x (Mechanical properties of solids)  
  62.20.fk (Ductility, malleability)  
  62.20.mm (Fracture)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 51571127.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/3/036102       OR      https://cpl.iphy.ac.cn/Y2018/V35/I3/036102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhi-Dong Han
Heng-Wei Luan
Shao-Fan Zhao
Na Chen
Rui-Xuan Peng
Yang Shao
Ke-Fu Yao
[1]Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H and Chang S Y 2004 Adv. Eng. Mater. 6 299
[2]Zhou Y J, Zhang Y, Wang Y L and Chen G L 2007 Appl. Phys. Lett. 90 181904
[3]Dong Y, Lu Y P, Kong J R, Zhang J J and Li T J 2013 J. Alloys Compd. 573 96
[4]Liu S, Gao M C, Liaw P K and Zhang Y 2015 J. Alloys Compd. 619 610
[5]Zhu J M, Fu H M, Zhang H F, Wang A M, Li H and Hu Z Q 2010 Mater. Sci. Eng. A 527 6975
[6]Ding H Y, Shao Y, Gong P, Li J F and Yao K F 2014 Mater. Lett. 125 151
[7]Ding H Y and Yao K F 2013 J. Non-Cryst. Solids 364 9
[8]Han Z D, Liu X, Zhao S F, Shao Y, Li J F and Yao K F 2015 Prog. Nat. Sci.: Mater. Int. 25 365
[9]Zhao S F, Shao Y, Liu X, Chen N, Ding H Y and Yao K F 2015 Mater. Des. 87 625
[10]Zhao S F, Yang G N, Ding H Y and Yao K F 2015 Intermetallics 61 47
[11]Qiu X W, Zhang Y P and Liu C G 2014 J. Alloys Compd. 585 282
[12]Li J M, Yang X, Zhu R L and Zhang Y J 2014 Metals 4 597
[13]Qiu X W, Huang C X, Wu M J, Liu C G and Zhang Y P 2016 J. Alloys Compd. 658 1
[14]Liu C M, Wang H M, Zhang S Q, Tang H B and Zhang A L 2014 J. Alloys Compd. 583 162
[15]Chuang M H, Tsai M H, Wang W R, Lin S J and Yeh J W 2011 Acta Mater. 59 6308
[16]Hsu C Y, Sheu T S, Yeh J W and Chen S K 2010 Wear 268 653
[17]Yeh J W 2013 JOM 65 1759
[18]Ranganathan S 2003 Curr. Sci. 85 1404
[19]Tang Z, Yuan T, Tsai C W, Yeh J W, Lundin C D and Liaw P K 2015 Acta Mater. 99 247
[20]Wang Y P, Li B S and Fu H Z 2009 Adv. Eng. Mater. 11 641
[21]Tsai M H, Yuan H, Cheng G M, Xu W Z, Tsai K Y, Tsai C W, Jian W W, Juan C C, Shen W J, Chuang M H, Yeh J W and Zhu Y T 2013 Intermetallics 32 329
[22]Yeh J W, Chen S K, Gan J Y, Lin S J, Chin T S, Shun T T, Tsau C H and Chang S Y 2004 Metall. Mater. Trans. A 35 2533
[23]Wang W L, Meng L J, Li L H, Hu L, Zhou K, Kong Z H and Wei B B 2016 Chin. Phys. Lett. 33 116102
[24]Qiao J W, Ma S G, Huang E W, Chuang C P, Liaw P K and Zhang Y 2011 Mater. Sci. Forum 688 419
[25]Zhu J M, Fu H M, Zhang H F, Wang A M, Li H and Hu Z Q 2010 Mater. Sci. Eng. A 527 7210
[26]Zhu J M, Fu H M, Zhang H F, Wang A M, Li H and Hu Z Q 2011 J. Alloys Compd. 509 3476
[27]Ma S G and Zhang Y 2012 Mater. Sci. Eng. A 532 480
[28]Hsu C Y, Juan C C, Sheu T S, Chen S K and Yeh J W 2013 JOM 65 1840
[29]Hsu C Y, Wang W R, Tang W Y, Chen S K and Yeh J W 2010 Adv. Eng. Mater. 12 44
[30]Hsu C Y, Juan C C, Wang W R, Sheu T S, Yeh J W and Chen S K 2011 Mater. Sci. Eng. A 528 3581
[31]Juan C C, Hsu C Y, Tsai C W, Wang W R, Sheu T S, Yeh J W and Chen S K 2013 Intermetallics 32 401
[32]Yang X and Zhang Y 2012 Mater. Chem. Phys. 132 233
[33]Wang Z J, Huang Y H, Yang Y, Wang J C and Liu C T 2015 Scr. Mater. 94 28
[34]Guo S, Ng C, Lu J and Liu C T 2011 J. Appl. Phys. 109 103505
[35]Liu C T and Horton J A 1995 Mater. Sci. Eng. A 192-193 170
Related articles from Frontiers Journals
[1] Yan-Bin Sheng, Hong-Peng Zhang, Tie-Long Shen, Kong-Fang Wei, Long Kang, Rui Liu, Tong-Min Zhang, Bing-Sheng Li. Atomic Mixing Induced by Ion Irradiation of V/Cu Multilayers[J]. Chin. Phys. Lett., 2020, 37(3): 036102
[2] Yi Wang, Wensheng Lai, Jiahao Li. An Incremental Model for Defect Production upon Cascade Overlapping[J]. Chin. Phys. Lett., 2020, 37(1): 036102
[3] Bing-Sheng Li, Zhi-Guang Wang, Tie-Long Shen, Kong-Fang Wei, Yan-Bin Sheng, Tamakai Shibayama, Xi-Rui Lu, An-Li Xiong. Effects of Helium Implantation and Subsequent Electron Irradiation on Microstructures of Fe-11wt.% Cr Model Alloy[J]. Chin. Phys. Lett., 2019, 36(4): 036102
[4] Chang-Hao Su, Chong-Hong Zhang, Yi-Tao Yang, Zhao-Nan Ding, Yu-Guang Chen, Akihiko Kimura. Hardening of an ODS Ferritic Steel after Helium Implantation and Thermal Annealing[J]. Chin. Phys. Lett., 2018, 35(5): 036102
[5] Chu-Bin Wan, Su-Ye Yu, Xin Ju. Energetics of He and H Atoms in W–Ta Alloys: First-Principle Calculations[J]. Chin. Phys. Lett., 2018, 35(4): 036102
[6] Chu-Bin Wan, Su-Ye Yu, Xin Ju. Clustering and Dissolution of Small Helium Clusters in Bulk Tungsten[J]. Chin. Phys. Lett., 2018, 35(2): 036102
[7] Ning Gao, Fei Gao, Zhi-Guang Wang. Anisotropic Migration of Defects under Strain Effect in BCC Iron[J]. Chin. Phys. Lett., 2017, 34(7): 036102
[8] Na Yan, Liang Hu, Ying Ruan, Wei-Li Wang, Bing-Bo Wei. Liquid State Undercoolability and Crystal Growth Kinetics of Ternary Ni-Cu-Sn Alloys[J]. Chin. Phys. Lett., 2016, 33(10): 036102
[9] ZHUO Long-Chao, LIANG Shu-Hua, WANG Feng, LIU Yu-Feng, XIONG Ji-Chun. Discontinuous Precipitation Reaction Front of Cellular Recrystallization for a Single-Crystal Superalloy Studied by Electron Microscopy[J]. Chin. Phys. Lett., 2015, 32(07): 036102
[10] LI Xiao-Tian, YANG Xiao-Bao, ZHAO Yu-Jun. Quasilattice-Conserved Optimization of the Atomic Structure of Decagonal Al-Co-Ni Quasicrystals[J]. Chin. Phys. Lett., 2015, 32(03): 036102
[11] MAO Xu, LV Xing-Dong, WEI Wei-Wei, ZHANG Zhe, YANG Jin-Ling, QI Zhi-Mei, YANG Fu-Hua. A Wafer-Level Sn-Rich Au–Sn Bonding Technique and Its Application in Surface Plasmon Resonance Sensors[J]. Chin. Phys. Lett., 2014, 31(05): 036102
[12] YUAN Da-Qing, ZHENG Yong-Nan, ZUO Yi, FAN Ping, ZHOU Dong-Mei, ZHANG Qiao-Li, MA Xiao-Qiang, CUI Bao-Qun, CHEN Li-Hua, JIANG Wei-Sheng, WU Yi-Can, HUANG Qun-Ying, PENG Lei, CAO Xing-Zhong, WANG Bao-Yi, WEI Long, ZHU Sheng-Yun. Synergistic Effect of Triple Ion Beams on Radiation Damage in CLAM Steel[J]. Chin. Phys. Lett., 2014, 31(04): 036102
[13] LI Yuan-Fei, SHEN Tie-Long, GAO Xing, GAO Ning, YAO Cun-Feng, SUN Jian-Rong, WEI Kong-Fang, LI Bing-Sheng, ZHANG Peng, CAO Xing-Zhong, ZHU Ya-Bin, PANG Li-Long, CUI Ming-Huan, CHANG Hai-Long, WANG Ji, ZHU Hui-Ping, WANG Dong, SONG Peng, SHENG Yan-Bin, ZHANG Hong-Peng, HU Bi-Tao, WANG Zhi-Guang. Helium-Implantation-Induced Damage in NHS Steel Investigated by Slow-Positron Annihilation Spectroscopy[J]. Chin. Phys. Lett., 2014, 31(03): 036102
[14] LI Yuan-Fei, SHEN Tie-Long, GAO Xing, YAO Cun-Feng, WEI Kong-Fang, SUN Jian-Rong, LI Bing-Sheng, ZHU Ya-Bin, PANG Li-Long, CUI Ming-Huan, CHANG Hai-Long, WANG Ji, ZHU Hui-Ping, HU Bi-Tao, WANG Zhi-Guang. Cavity Swelling in Three Ferritic-Martensitic Steels Irradiated by 196 MeV Kr Ions[J]. Chin. Phys. Lett., 2013, 30(12): 036102
[15] HU Jing, WANG Xian-Ping, ZHUANG Zhong, ZHANG Tao, FANG Qian-Feng, LIU Chang-Song. Dynamic Behaviors of Hydrogen in Martensitic T91 Steel Evaluated by Using the Internal Friction Method[J]. Chin. Phys. Lett., 2013, 30(4): 036102
Viewed
Full text


Abstract