Chin. Phys. Lett.  2018, Vol. 35 Issue (2): 027201    DOI: 10.1088/0256-307X/35/2/027201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Electron Transport Behavior of Multiferroic Perovskite BiMnO$_{3}$ Prepared by Co-Precipitation Method
Hong-Jun Wang, Yuan-Yuan Zhu**, Jing Zhou
Department of Physics, Shaanxi University of Science and Technology, Xi'an 710021
Cite this article:   
Hong-Jun Wang, Yuan-Yuan Zhu, Jing Zhou 2018 Chin. Phys. Lett. 35 027201
Download: PDF(516KB)   PDF(mobile)(509KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Perovskite BiMnO$_{3}$ samples are successfully synthesized by the co-precipitation method at relatively low pressure and moderate temperature. The temperature dependences of resistivity are measured and systematically investigated. It is shown that the electrical resistivity increases sharply with the decrease of temperature above 210 K and the fitted results demonstrate that the thermally activated conduction model is the dominant conduction mechanism for the electron transport behaviors in this temperature region. A dual conducting mechanism, i.e., the variable range hopping and thermal activated conduction, is suggested to be responsible for the transport behaviors of BiMnO$_{3}$ in the region of 180–200 K. Moreover, the resistivity increases slightly with the decrease of temperature below 180 K and the transport is governed by the variable range hopping mechanism.
Received: 10 October 2017      Published: 23 January 2018
PACS:  72.80.Ga (Transition-metal compounds)  
  72.15.Eb (Electrical and thermal conduction in crystalline metals and alloys)  
  66.70.Df (Metals, alloys, and semiconductors)  
Fund: Supported by the Key Research Project of Shaanxi University of Science and Technology under Grant Nos 2016GBJ-12 and 2016BJ-59.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/2/027201       OR      https://cpl.iphy.ac.cn/Y2018/V35/I2/027201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hong-Jun Wang
Yuan-Yuan Zhu
Jing Zhou
[1]Son J Y, Park C S and Kim H 2010 Met. Mater. Int. 16 289
[2]Yao C D, Gong J F, Geng F F, Gao H, Xu Y L, Zhang A M, Tang C M and Zhu W H 2010 Acta Phys. Sin. 59 5332 (in Chinese)
[3]Li S, Zhang J M, Kibria M G et al 2013 Chem. Commun. 49 5856
[4]Shirolkar M M, Hao C, Dong X et al 2014 Nanoscale 6 4735
[5]Mukherjee A, Basu S, Manna P K et al 2014 J. Mater. Chem. C 2 5885
[6]Brankovi Z, Stanojevi Z, Mancic L et al 2010 J. Eur. Ceram. Soc. 30 277
[7]Yokosawa T, Belik A A, Asaka T et al 2008 Phys. Rev. B 77 024111
[8]Lee B W, Yoo P S, Nam V B et al 2015 Nanoscale Res. Lett. 10 47
[9]Guennou M, Bouvier P, Toulemonde P et al 2014 Phys. Rev. Lett. 112 075501
[10]Sugawara F and Iiida S 1968 J. Phys. Soc. Jpn. 25 1553
[11]Belik A A, Matsushita Y, Tanaka M et al 2011 Inorg. Mater. 50 7685
[12]Eerenstein W, Morrison F D, Scott F et al 2005 Appl. Phys. Lett. 87 101906
[13]Dar M S and Akram K B 2014 J. Supercond. Novel Magn. 27 613
[14]Mazumder N, Uddin I, Khan S et al 2007 J. Mater. Chem. 17 3910
[15]Sun B and Li C M 2015 Phys. Chem. Chem. Phys. 17 6718
[16]Grizalez M, Delgado E, Gómezand M E and Prieto P 2007 Phys. Stat. Sol. 4 4203
[17]Majumdar S and Banerji P 2010 J. Appl. Phys. 107 063702
[18]Chiba H, Atou T and Syono Y 1997 J. Solid St. Chem. 132 139
[19]Woo H, Tyson T A and Croft M et al 2001 Phys. Rev. B 63 134412
[20]Seshadri R and Hill N A 2001 Chem. Mater. 13 2892
[21]Koronska R B and Nalecz D M 2013 Phase Trans. 86 167
[22]Catalan G, Bowman R M and Gregg J M 2000 Phys. Rev. B 62 7892
[23]Zhu Y Y, Wang H J, Wang L, Liu Y, Xiong R and Shi J 2016 J. Alloy Compd. 666 248
[24]Zhu Y Y, Wang R J, Wang L, Liu Y, Xiong R, Shi J, An L H and Sun D H 2014 Chin. Phys. Lett. 31 097201
[25]AnisurRahman K M, Schneider S C and Seitz M A 2005 J. Am. Ceram. Soc. 80 1198
[26]Belik A A 2017 J. Solid State Chem. 246 8
Related articles from Frontiers Journals
[1] Guangqiang Wang, Guoqing Chang, Huibin Zhou, Wenlong Ma, Hsin Lin, M. Zahid Hasan, Su-Yang Xu, and Shuang Jia. Field-Induced Metal–Insulator Transition in $\beta$-EuP$_3$[J]. Chin. Phys. Lett., 2020, 37(10): 027201
[2] Yanjing Tang, Xianxi Yu, Shaobo Liu, Anran Yu, Jiajun Qin, Ruichen Yi, Yuan Pei, Chunqin Zhu, Xiaoyuan Hou. Hole Injection Enhancement of MoO$_{3}$/NPB/Al Composite Anode[J]. Chin. Phys. Lett., 2019, 36(12): 027201
[3] Yan Li, Zhao Sun, Jia-Wei Cai, Jian-Ping Sun, Bo-Sen Wang, Zhi-Ying Zhao, Y. Uwatoko, Jia-Qiang Yan, Jin-Guang Cheng. Pressure-Induced Charge-Order Melting and Reentrant Charge Carrier Localization in the Mixed-Valent Pb$_{3}$Rh$_{7}$O$_{15}$[J]. Chin. Phys. Lett., 2017, 34(8): 027201
[4] Xu-Bo Lai, Yu-Hang Wang, Xiao-Lan Shi, Dong-Yong Li, Bo-Yang Liu, Rong-Ming Wang, Liu-Wan Zhang. Bipolar Resistive Switching in Epitaxial Mn$_{3}$O$_{4}$ Thin Films on Nb-Doped SrTiO$_{3}$ Substrates[J]. Chin. Phys. Lett., 2016, 33(06): 027201
[5] Wei-Cheng Lee, Congjun Wu. Microscopic Theory of the Thermodynamic Properties of Sr$_3$Ru$_2$O$_7$[J]. Chin. Phys. Lett., 2016, 33(03): 027201
[6] FAN Guo-Zhi, CHEN Rong-Yan, WANG Nan-Lin, LUO Jian-Lin. 31P Nuclear Magnetic Resonance of Charge-Density-Wave Transition in a Single Crystal of RuP[J]. Chin. Phys. Lett., 2015, 32(07): 027201
[7] CHEN Yong-Chang, HUO Miao, LIU Yang, CHEN Tong, LENG Cheng-Cai, LI Qiang, SUN Zhao-Lin, SONG Li-Juan. Structural, Electrical, and Lithium Ion Dynamics of Li2MnO3 from Density Functional Theory[J]. Chin. Phys. Lett., 2015, 32(01): 027201
[8] ZHU Yuan-Yuan, WANG Rong-Juan, WANG Li, LIU Yong, XIONG Rui, SHI Jing, AN Li-Heng, SUN Duo-Hua. Transport Behavior in Spinel Oxide MgTi2O4[J]. Chin. Phys. Lett., 2014, 31(09): 027201
[9] CAO Yu-Fei, CAI Kai-Ming, LI Li-Jun, LU Wen-Jian, SUN Yu-Ping, WANG Kai-You. Transport and Capacitance Properties of Charge Density Wave in Few-Layer 2H–TaS2 Devices[J]. Chin. Phys. Lett., 2014, 31(07): 027201
[10] ZHAO Geng, CHENG Xiao-Man, **, TIAN Hai-Jun, DU Bo-Qun, LIANG Xiao-Yu . Improved Performance of Pentacene Organic Field-Effect Transistors by Inserting a V2O5 Metal Oxide Layer[J]. Chin. Phys. Lett., 2011, 28(12): 027201
[11] XU Jia-Xiong, YAO Ruo-He*, LIU Yu-Rong . Fabrication of a ZnO:Al/Amorphous-FeSi2 Heterojunction at Room Temperature[J]. Chin. Phys. Lett., 2011, 28(10): 027201
[12] LI Na, YUE Chong-Xing**, LI Xu-Xin . Neutrino-Electron Scattering and the Little Higgs Models[J]. Chin. Phys. Lett., 2011, 28(10): 027201
[13] C. K. Sumesh**, K. D. Patel, V. M. Pathak, R. Srivastav . Current Transport in Copper Schottky Contacts to a−Plane/ c−Plane n-Type MoSe2[J]. Chin. Phys. Lett., 2011, 28(8): 027201
[14] WANG Yan, LIU Qi, LV Hang-Bing, LONG Shi-Bing, ZHANG Sen, LI Ying-Tao, LIAN Wen-Tai, YANG Jian-Hong**, LIU Ming . CMOS Compatible Nonvolatile Memory Devices Based on SiO2/Cu/SiO2 Multilayer Films[J]. Chin. Phys. Lett., 2011, 28(7): 027201
[15] YUE Song, DU Juan, ZHANG Yuan, ZHANG Yu-Heng. Metal-Insulator Transition in CuIr2(S1-xTex)4[J]. Chin. Phys. Lett., 2009, 26(11): 027201
Viewed
Full text


Abstract