Chin. Phys. Lett.  2018, Vol. 35 Issue (2): 027301    DOI: 10.1088/0256-307X/35/2/027301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Effect of Mg-Preflow for p-AlGaN Electron Blocking Layer on the Electroluminescence of Green LEDs with V-Shaped Pits
Ai-Xing Li, Chun-Lan Mo**, Jian-Li Zhang, Xiao-Lan Wang, Xiao-Ming Wu, Guang-Xu Wang, Jun-Lin Liu, Feng-Yi Jiang
National Institute of LED on Silicon Substrate, Nanchang University, Nanchang 330047
Cite this article:   
Ai-Xing Li, Chun-Lan Mo, Jian-Li Zhang et al  2018 Chin. Phys. Lett. 35 027301
Download: PDF(657KB)   PDF(mobile)(652KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract InGaN-based green light-emitting diodes (LEDs) with and without Mg-preflow before the growth of p-AlGaN electron blocking layer (EBL) are investigated experimentally. A higher Mg doping concentration is achieved in the EBL after Mg-preflow treatment, effectively alleviating the commonly observed efficiency collapse and electrons overflowing at cryogenic temperatures. However, unexpected decline in quantum efficiency is observed after Mg-preflow treatment at room temperature. Our conclusions are drawn such that the efficiency decline is probably the result of different emission positions. Higher Mg doping concentration in the EBL after Mg-preflow treatment will make it easier for a hole to be injected into multiple quantum wells with emission closer to p-GaN side through the $c$-plane rather than the V-shape pits, which is not favorable to luminous efficiency due to the preferred occurrence of accumulated strain relaxation and structural defects in upper QWs closer to p-GaN. Within this framework, apparently disparate experimental observations regarding electroluminescence properties, in this work, are well reconciled.
Received: 17 November 2017      Published: 23 January 2018
PACS:  73.61.Ey (III-V semiconductors)  
  78.60.Fi (Electroluminescence)  
  73.21.Fg (Quantum wells)  
  61.72.Ff (Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.))  
Fund: Supported by the National Key R&D Program of China under Grant Nos 2016YFB0400600 and 2016YFB0400601, the State Key Program of the National Natural Science of China under Grant No 61334001, the Key R&D Program of Jiangxi Province under Grant No 20165ABC28007, the Natural Science Foundation of Jiangxi Province under Grant No 20151BAB207053, and the National Natural Science Foundation of China under Grant No 21405076.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/2/027301       OR      https://cpl.iphy.ac.cn/Y2018/V35/I2/027301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ai-Xing Li
Chun-Lan Mo
Jian-Li Zhang
Xiao-Lan Wang
Xiao-Ming Wu
Guang-Xu Wang
Jun-Lin Liu
Feng-Yi Jiang
[1]Guo M, Guo Z Y, Huang J, Liu Y and Yao S Y 2017 Chin. Phys. B 26 028502
[2]Zhao Y K, Li Y F, Huang Y P, Wang H, Su X L, Ding W and Yun F 2015 Chin. Phys. B 24 056806
[3]Meyaard D S, Lin G B, Cho J, Fred Schubert E, Shim H, Ham S H, Kim M H, Sone C and Kim Y S 2013 Appl. Phys. Lett. 102 251114
[4]Zhao Y K, Yun F, Wang S, Feng L G, Su X L, Li Y F, Guo M F, Ding W and Zhang Y 2016 J. Appl. Phys. 119 105703
[5]Zhang Z H, Tan S T, Kyaw Z, Ji Y, Liu W, Ju Z G, Hasanoy N, Sun X W and Demir H V 2013 Appl. Phys. Lett. 102 193508
[6]Zhang Y, Zhang Z H, Tan S T, Hernandez-Martinez P L, Zhu B, Lu S, Kang X J, Sun X W and Demir H V 2017 Appl. Phys. Lett. 110 033506
[7]Mo C L, Fang W Q, Pu Y, Liu H C and Jiang F Y 2005 J. Cryst. Growth 285 312
[8]Liu J, Feng F, Zhou Y et al 2011 Appl. Phys. Lett. 99 111112
[9]Mao Q H, Liu J L, Quan Z J, Wu X M, Zhang M and Jiang F Y 2015 ECS J. Solid State Sci. Technol. 4 R44
[10]Tomiya S, Kanitani Y, Tanaka S, Ohkubo T and Hono K 2011 Appl. Phys. Lett. 98 181904
[11]Hangleiter A, Hitzel F, Netzel C, Netzel, Fuhrmann D, Rossow U, Ade G and Hinze P 2005 Phys. Rev. Lett. 95 127402
[12]Li Y F, Yun F, Su X L, Liu S, Ding W and Hou X 2014 J. Appl. Phys. 116 123101
[13]Cho H K, Lee J Y, Kim C S and Yang G M 2002 J. Appl. Phys. 91 1166
[14]Wang H, Jiang D S, Jahn U, Zhu J J, Zhao D G, Liu Z S, Zhang S M, Qiu Y X and Yang H 2010 Physica B 405 4668
[15]Kozodoy P, Xing H, Denbaars S P, Mishra U K, Saxler A, Perrin R, Elhamri S and Mitchel W C 2000 J. Appl. Phys. 87 1832
Related articles from Frontiers Journals
[1] Da-Hong Su, Yun Xu, Wen-Xin Wang, Guo-Feng Song. Growth Control of High-Performance InAs/GaSb Type-II Superlattices via Optimizing the In/Ga Beam-Equivalent Pressure Ratio[J]. Chin. Phys. Lett., 2020, 37(3): 027301
[2] SiQin-GaoWa Bao, Jie-Jie Zhu, Xiao-Hua Ma, Bin Hou, Ling Yang, Li-Xiang Chen, Qing Zhu, Yue Hao. Effects of Low-Damage Plasma Treatment on the Channel 2DEG and Device Characteristics of AlGaN/GaN HEMTs[J]. Chin. Phys. Lett., 2020, 37(2): 027301
[3] Zhong-Qiu Xing, Yong-Jie Zhou, Yu-Huai Liu, Fang Wang. Reduction of Electron Leakage of AlGaN-Based Deep Ultraviolet Laser Diodes Using an Inverse-Trapezoidal Electron Blocking Layer[J]. Chin. Phys. Lett., 2020, 37(2): 027301
[4] Yi-Fu Wang, Mussaab I. Niass, Fang Wang, Yu-Huai Liu. Reduction of Electron Leakage in a Deep Ultraviolet Nitride Laser Diode with a Double-Tapered Electron Blocking Layer[J]. Chin. Phys. Lett., 2019, 36(5): 027301
[5] Xin Li, Yu Zhao, Min Xiong, Qi-Hua Wu, Yan Teng, Xiu-Jun Hao, Yong Huang, Shuang-Yuan Hu, Xin Zhu. High-Quality InSb Grown on Semi-Insulting GaAs Substrates by Metalorganic Chemical Vapor Deposition for Hall Sensor Application[J]. Chin. Phys. Lett., 2019, 36(1): 027301
[6] Zhi-Hui Wang, Xiao-Lan Wang, Jun-Lin Liu, Jian-Li Zhang, Chun-Lan Mo, Chang-Da Zheng, Xiao-Ming Wu, Guang-Xu Wang, Feng-Yi Jiang. Effect of Green Quantum Well Number on Properties of Green GaN-Based Light-Emitting Diodes[J]. Chin. Phys. Lett., 2018, 35(8): 027301
[7] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 027301
[8] Ben Du, Yi Gu, Yong-Gang Zhang, Xing-You Chen, Ying-Jie Ma, Yan-Hui Shi, Jian Zhang. Wavelength Extended InGaAsBi Detectors with Temperature-Insensitive Cutoff Wavelength[J]. Chin. Phys. Lett., 2018, 35(7): 027301
[9] Xi-xia Tao, Chun-lan Mo, Jun-lin Liu, Jian-li Zhang, Xiao-lan Wang, Xiao-ming Wu, Long-quan Xu, Jie Ding, Guang-xu Wang, Feng-yi Jiang. Electroluminescence from the InGaN/GaN Superlattices Interlayer of Yellow LEDs with Large V-Pits Grown on Si (111)[J]. Chin. Phys. Lett., 2018, 35(5): 027301
[10] Xiang-Mi Zhan, Quan Wang, Kun Wang, Wei Li, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Cui-Mei Wang, Xiao-Liang Wang, Zhan-Guo Wang. Fast Electrical Detection of Carcinoembryonic Antigen Based on AlGaN/GaN High Electron Mobility Transistor Aptasensor[J]. Chin. Phys. Lett., 2017, 34(9): 027301
[11] Xiang-Mi Zhan, Mei-Lan Hao, Quan Wang, Wei Li, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Cui-Mei Wang, Xiao-Liang Wang, Zhan-Guo Wang. Highly Sensitive Detection of Deoxyribonucleic Acid Hybridization Using Au-Gated AlInN/GaN High Electron Mobility Transistor-Based Sensors[J]. Chin. Phys. Lett., 2017, 34(4): 027301
[12] Han-Han Lu, Jing-Ping Xu, Lu Liu. Interfacial and Electrical Properties of GaAs Metal-Oxide-Semiconductor Capacitor with ZrAlON as the Interfacial Passivation Layer[J]. Chin. Phys. Lett., 2017, 34(4): 027301
[13] Xue-Feng Zheng, Ao-Chen Wang, Xiao-Hui Hou, Ying-Zhe Wang, Hao-Yu Wen, Chong Wang, Yang Lu, Wei Mao, Xiao-Hua Ma, Yue Hao. Influence of the Diamond Layer on the Electrical Characteristics of AlGaN/GaN High-Electron-Mobility Transistors[J]. Chin. Phys. Lett., 2017, 34(2): 027301
[14] Feng Dai, Xue-Feng Zheng, Pei-Xian Li, Xiao-Hui Hou, Ying-Zhe Wang, Yan-Rong Cao, Xiao-Hua Ma, Yue Hao. The Transport Mechanisms of Reverse Leakage Current in Ultraviolet Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 027301
[15] Ning Zhang, Xue-Cheng Wei, Kun-Yi Lu, Liang-Sen Feng, Jie Yang, Bin Xue, Zhe Liu, Jin-Min Li, Jun-Xi Wang. Effect of Back Diffusion of Mg Dopants on Optoelectronic Properties of InGaN-Based Green Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 027301
Viewed
Full text


Abstract