FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Experimental Observation of Bright and Dark Solitons Mode-Locked with Zirconia-Based Erbium-Doped Fiber Laser |
A. M. Markom1**, S. J. Tan2, H. Haris3, M. C. Paul4, A. Dhar4, S. Das4, S. W. Harun3 |
1Faculty of Electrical Engineering, Universiti Teknologi MARA, Masai 81750, Malaysia 2School of Engineering, KDU University College, Utropolis Glenmarie, Shah Alam 40150, Malaysia 3Department of Electrical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia 4Fiber Optics and Photonics Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, India
|
|
Cite this article: |
A. M. Markom, S. J. Tan, H. Haris et al 2018 Chin. Phys. Lett. 35 024203 |
|
|
Abstract We demonstrate the generation of dark and bright solitons with our homemade zirconia-based erbium-doped fiber and graphene oxide (GO) saturable absorber in anomalous dispersion region. The GO is fabricated using an abridged Hummer's method, which is combined with polyethylene oxide to produce a composite film. The film is sandwiched between two optical ferrules and embedded in the laser cavity to enhance its birefringence and nonlinearity. The self-starting bright soliton is easily generated at pump power of 78 mW with the whole length cavity of 14.7 m. The laser produces the bright pulse train with repetition rate, pulse width, pulse energy and central wavelength being 13.9 MHz, 0.6 ps, 2.74 pJ and 1577.46 nm, respectively. Then, by adding the 10 m of single mode fiber into the laser cavity, dark soliton pulse is produced. For the formation of dark pulse train, the measured repetition rate, pulse width, pulse energy and central wavelength are 8.3 MHz, 20 ns and 4.98 pJ and 1596.82 nm, respectively. Both pulses operate in the anomalous region.
|
|
Received: 28 August 2017
Published: 23 January 2018
|
|
PACS: |
42.81.Qb
|
(Fiber waveguides, couplers, and arrays)
|
|
42.55.Wd
|
(Fiber lasers)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
|
|
|
[1] | Liu X M, Han X X and Yao X K 2016 Sci. Rep. 6 34414 | [2] | Liu X, Cui Y, Han D et al 2015 Sci. Rep. 5 9101 | [3] | Liu X, Han D, Sun Z et al 2013 Sci. Rep. 3 2718 | [4] | Liu X 2010 Phys. Rev. A 81 023811 | [5] | Weiner A, Heritage J, Hawkins R et al 1988 Phys. Rev. Lett. 61 2445 | [6] | Leners R, Emplit P, Foursa D et al 1997 J. Opt. Soc. Am. B 14 2339 | [7] | Wang L Y, Xu W C, Luo Z C et al 2012 Opt. Commun. 285 2113 | [8] | Gao W, Liao M, Kawashima H et al 2013 IEEE Photon. Technol. Lett. 25 546 | [9] | Ning Q Y, Wang S K, Luo A P et al 2012 IEEE Photon. Technol. Lett. 4 1647 | [10] | Yin H, Xu W, Luo A P et al 2010 Opt. Commun. 283 4338 | [11] | Tiu Z C, Tan S J, Ahmad H et al 2014 Chin. Opt. Lett. 12 113202 | [12] | Ismail M, Tan S J, Shahabuddin N et al 2012 Chin. Phys. Lett. 29 054216 | [13] | Ahmad H, Tiu Z C, Zarei A et al 2016 Appl. Phys. B 122 69 | [14] | Liu H and Chow K 2014 Opt. Express 22 29708 | [15] | Zhao J, Wang Y, Yan P et al 2013 Laser Phys. 23 075105 | [16] | Haris H, Harun S W, Anyi C et al 2016 J. Mod. Opt. 63 777 | [17] | Popa D, Sun Z, Torrisi F et al 2010 Appl. Phys. Lett. 97 203106 | [18] | Lin R Y, Wang Y G, Yan P G et al 2014 IEEE Photon. J. 6 1 | [19] | Ahmad H, Thambiratnam K, Paul M C et al 2012 Opt. Mater. Express 2 1690 | [20] | Paul M C, Dhar A, Das S et al 2015 IEEE Photon. J. 7 1 | [21] | Paul M C, Sobon G, Sotor J et al 2013 Laser Phys. 23 035110 | [22] | Agrawal G P 2007 Nonlinear Fiber Optics (New York: Academic press) | [23] | Lin Y H and Lin G R 2013 Laser Phys. Lett. 10 045109 | [24] | Tian W, Zhu J, Wang Z et al 2014 Chin. Opt. Lett. 12 031401 | [25] | Zhang H, Tang D, Knize R et al 2010 Appl. Phys. Lett. 96 111112 | [26] | Tang D, Guo J, Song Y et al 2014 Opt. Express 22 19831 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|