Chin. Phys. Lett.  2018, Vol. 35 Issue (2): 024203    DOI: 10.1088/0256-307X/35/2/024203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Experimental Observation of Bright and Dark Solitons Mode-Locked with Zirconia-Based Erbium-Doped Fiber Laser
A. M. Markom1**, S. J. Tan2, H. Haris3, M. C. Paul4, A. Dhar4, S. Das4, S. W. Harun3
1Faculty of Electrical Engineering, Universiti Teknologi MARA, Masai 81750, Malaysia
2School of Engineering, KDU University College, Utropolis Glenmarie, Shah Alam 40150, Malaysia
3Department of Electrical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
4Fiber Optics and Photonics Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, India
Cite this article:   
A. M. Markom, S. J. Tan, H. Haris et al  2018 Chin. Phys. Lett. 35 024203
Download: PDF(801KB)   PDF(mobile)(796KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We demonstrate the generation of dark and bright solitons with our homemade zirconia-based erbium-doped fiber and graphene oxide (GO) saturable absorber in anomalous dispersion region. The GO is fabricated using an abridged Hummer's method, which is combined with polyethylene oxide to produce a composite film. The film is sandwiched between two optical ferrules and embedded in the laser cavity to enhance its birefringence and nonlinearity. The self-starting bright soliton is easily generated at pump power of 78 mW with the whole length cavity of 14.7 m. The laser produces the bright pulse train with repetition rate, pulse width, pulse energy and central wavelength being 13.9 MHz, 0.6 ps, 2.74 pJ and 1577.46 nm, respectively. Then, by adding the 10 m of single mode fiber into the laser cavity, dark soliton pulse is produced. For the formation of dark pulse train, the measured repetition rate, pulse width, pulse energy and central wavelength are 8.3 MHz, 20 ns and 4.98 pJ and 1596.82 nm, respectively. Both pulses operate in the anomalous region.
Received: 28 August 2017      Published: 23 January 2018
PACS:  42.81.Qb (Fiber waveguides, couplers, and arrays)  
  42.55.Wd (Fiber lasers)  
  42.60.Fc (Modulation, tuning, and mode locking)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/2/024203       OR      https://cpl.iphy.ac.cn/Y2018/V35/I2/024203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
A. M. Markom
S. J. Tan
H. Haris
M. C. Paul
A. Dhar
S. Das
S. W. Harun
[1]Liu X M, Han X X and Yao X K 2016 Sci. Rep. 6 34414
[2]Liu X, Cui Y, Han D et al 2015 Sci. Rep. 5 9101
[3]Liu X, Han D, Sun Z et al 2013 Sci. Rep. 3 2718
[4]Liu X 2010 Phys. Rev. A 81 023811
[5]Weiner A, Heritage J, Hawkins R et al 1988 Phys. Rev. Lett. 61 2445
[6]Leners R, Emplit P, Foursa D et al 1997 J. Opt. Soc. Am. B 14 2339
[7]Wang L Y, Xu W C, Luo Z C et al 2012 Opt. Commun. 285 2113
[8]Gao W, Liao M, Kawashima H et al 2013 IEEE Photon. Technol. Lett. 25 546
[9]Ning Q Y, Wang S K, Luo A P et al 2012 IEEE Photon. Technol. Lett. 4 1647
[10]Yin H, Xu W, Luo A P et al 2010 Opt. Commun. 283 4338
[11]Tiu Z C, Tan S J, Ahmad H et al 2014 Chin. Opt. Lett. 12 113202
[12]Ismail M, Tan S J, Shahabuddin N et al 2012 Chin. Phys. Lett. 29 054216
[13]Ahmad H, Tiu Z C, Zarei A et al 2016 Appl. Phys. B 122 69
[14]Liu H and Chow K 2014 Opt. Express 22 29708
[15]Zhao J, Wang Y, Yan P et al 2013 Laser Phys. 23 075105
[16]Haris H, Harun S W, Anyi C et al 2016 J. Mod. Opt. 63 777
[17]Popa D, Sun Z, Torrisi F et al 2010 Appl. Phys. Lett. 97 203106
[18]Lin R Y, Wang Y G, Yan P G et al 2014 IEEE Photon. J. 6 1
[19]Ahmad H, Thambiratnam K, Paul M C et al 2012 Opt. Mater. Express 2 1690
[20]Paul M C, Dhar A, Das S et al 2015 IEEE Photon. J. 7 1
[21]Paul M C, Sobon G, Sotor J et al 2013 Laser Phys. 23 035110
[22]Agrawal G P 2007 Nonlinear Fiber Optics (New York: Academic press)
[23]Lin Y H and Lin G R 2013 Laser Phys. Lett. 10 045109
[24]Tian W, Zhu J, Wang Z et al 2014 Chin. Opt. Lett. 12 031401
[25]Zhang H, Tang D, Knize R et al 2010 Appl. Phys. Lett. 96 111112
[26]Tang D, Guo J, Song Y et al 2014 Opt. Express 22 19831
Related articles from Frontiers Journals
[1] Pei Yuan, Xiao-Guang Zhang, Jun-Ming An, Peng-Gang Yin, Yue Wang, Yuan-Da Wu. Improved Performance of a Wavelength-Tunable Arrayed Waveguide Grating in Silicon on Insulator[J]. Chin. Phys. Lett., 2019, 36(5): 024203
[2] Yin-Xing Ding, Lu-Lu Wang, Li Yu. Leaky Modes in Ag Nanowire over Substrate Configuration[J]. Chin. Phys. Lett., 2017, 34(9): 024203
[3] XIAO Li-Ping, WANG Fa-Qiang, LIANG Rui-Sheng, ZOU Shi-Wei, HU Miao. A High-Sensitivity Refractive-Index Sensor Based on Plasmonic Waveguides Asymmetrically Coupled with a Nanodisk Resonator[J]. Chin. Phys. Lett., 2015, 32(07): 024203
[4] LI Lu, PANG Li-Hui, ZHOU Zhi-Guang, ZHANG Ai-Dong, HE Jian-Li, SI Jin-Hai, LIN Ao-Xiang. Design of a Solid-Core Large-Mode-Area Bragg Fiber[J]. Chin. Phys. Lett., 2015, 32(5): 024203
[5] LI Dong-Dong, SHE Jiang-Bo, WANG Chang-Shun, PENG Bo. Visible Light Driven Photocatalytic Reactor Based on Micro-structured Polymer Optical Fiber Preform[J]. Chin. Phys. Lett., 2014, 31(05): 024203
[6] WU Huai-Zhi, YANG Zhen-Biao. Distributed Qutrit–Qutrit Entanglement through Laser-Driven Resonant Interaction[J]. Chin. Phys. Lett., 2014, 31(2): 024203
[7] ZHENG Wan-Jun, CHENG Jian-Qun, RUAN Shuang-Chen**, ZHANG Min, LIU Wen-Li, YANG Xi, ZHANG Ying-Ying. A Switchable Multi-wavelength Erbium-Doped Photonic Crystal Fiber Laser with Linear Cavity Configuration[J]. Chin. Phys. Lett., 2012, 29(12): 024203
[8] YU Xue-Lian, YAO Yong, XIAO Jun-Jun, TIAN Jia-Jun. A Practical Approach to Synthesize Multi-channel Fiber Bragg Grating with Right-Angled Triangular Spectrum[J]. Chin. Phys. Lett., 2012, 29(11): 024203
[9] YAN Hao-Zhe, PENG Jing-Gang, LI Jin-Yan, YANG Lü-Yun. Numerical Study of Plasmonic Modes in Hexagonally Arranged Metal Nanowire Array[J]. Chin. Phys. Lett., 2012, 29(7): 024203
[10] LIU Tian, TONG Wei-Jun, ZHANG Fang-Hai, ZHANG Xin-Ben, DAI Neng-Li**, LI Jin-Yan . A New Ge/F−Co-doped SMF with Enhanced SBS Threshold Fabricated by PCVD[J]. Chin. Phys. Lett., 2011, 28(10): 024203
[11] ZHOU Liang, LI Zhi-Yong**, XIAO Xi, XU Hai-Hua, FAN Zhong-Chao, HAN Wei-Hua, YU Yu-De, YU Jin-Zhong. A Compact and Highly Efficient Silicon-Based Asymmetric Mach–Zehnder Modulator with Broadband Spectral Operation[J]. Chin. Phys. Lett., 2011, 28(7): 024203
[12] WANG Jing-Li, **, YAO Jian-Quan, CHEN He-Ming, LI Zhong-Yang . A Simple Birefringent Terahertz Waveguide Based on Polymer Elliptical Tube[J]. Chin. Phys. Lett., 2011, 28(1): 024203
[13] LI Yu-He, FAN Wan-De**, SHENG Qiu-Qin . A Novel Photonic Quasicrystal Fiber with Broadband Large Negative Dispersion[J]. Chin. Phys. Lett., 2010, 27(11): 024203
[14] CHENG Tong-Lei, CHAI Lu**, HU Ming-Lie, LI Yan-Feng, WANG Ching-Yue . Theoretical Study on a Cluster-Seven-Core Photonic Crystal Fiber with High Nonlinearity and High-Power Endurance[J]. Chin. Phys. Lett., 2010, 27(11): 024203
[15] ZHANG Yun-Jun, WANG Wei, ZHOU Ren-Lai, SONG Shi-Fei, TIAN Yi, WANG Yue-Zhu. Narrow Linewidth Tm3+-Doped Large Core Fiber Laser Based on a Femtosecond Written Fiber Bragg Grating[J]. Chin. Phys. Lett., 2010, 27(7): 024203
Viewed
Full text


Abstract