CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Different Charging-Induced Modulations of Highest Occupied Molecular Orbital Energies in Fullerenes in Comparison with Carbon Nanotubes and Graphene Sheets |
Hong-Ping Yang1†, Hai-Hong Bao2†, Li-Li Han2, Wen-Juan Yuan2**, Jun Luo2, Jing Zhu1** |
1National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 2Center for Electron Microscopy, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384
|
|
Cite this article: |
Hong-Ping Yang, Hai-Hong Bao, Li-Li Han et al 2018 Chin. Phys. Lett. 35 127301 |
|
|
Abstract The highest occupied molecular orbital (HOMO) energies of fullerenes are found by quantitative first-principles calculations to be raised by negative charging, and the rising rate rank of the fullerenes is C$_{60}>$C$_{70}>$C$_{80}>$C$_{90}$ $>$C$_{100}>$C$_{180}$. Then we compare fullerenes with carbon nanotubes (CNTs) and graphene sheets (GSs) and find that the increase of the HOMO energy of a fullerene is much faster than that of CNTs and graphene sheets with the same number of C atoms. The rising rate rank is fullerene$>$CNT$>$GS, which holds no matter what the number of C atoms is or which structure the fullerene isomer is. This work paves a new path for developing all-carbon devices with low-dimensional carbon nanomaterials as different functional elements.
|
|
Received: 02 July 2018
Published: 23 November 2018
|
|
PACS: |
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
71.15.Ap
|
(Basis sets (LCAO, plane-wave, APW, etc.) and related methodology (scattering methods, ASA, linearized methods, etc.))
|
|
61.48.-c
|
(Structure of fullerenes and related hollow and planar molecular structures)
|
|
|
|
|
[1] | Kroto H W et al 1985 Nature 318 162 | [2] | Schön J H et al 2001 Nature 413 831 | [3] | Ren H et al 2012 Chin. Phys. Lett. 29 077301 | [4] | Shubina T E et al 2014 J. Am. Chem. Soc. 136 10890 | [5] | Bi W T et al 2014 Chin. Phys. B 23 017803 | [6] | Dennler G et al 2009 Adv. Mater. 21 1323 | [7] | Burlingame Q et al 2018 Nature 554 77 | [8] | Benduhn J et al 2017 Nat. Energy 2 17053 | [9] | Cates N C et al 2009 Nano Lett. 9 4153 | [10] | Guerrero A et al 2013 ACS Nano 7 4637 | [11] | Li Y et al 2007 Chin. Phys. Lett. 24 2654 | [12] | Huber R C et al 2015 Science 348 1340 | [13] | Gao F et al 2013 J. Am. Chem. Soc. 135 3315 | [14] | Gupta N K et al 2016 Angew. Chem. Int. Ed. 55 1728 | [15] | Coro J et al 2016 Int. J. Hydrogen Energy 41 17944 | [16] | Tang C M et al 2015 Acta Phys. Sin. 64 096103 | [17] | Lan J H et al 2009 ACS Nano 3 3294 | [18] | Chen H S and Qi P T 2015 Acta Phys. Sin. 64 238102 | [19] | Bairi P et al 2016 ACS Nano 10 6631 | [20] | Partha R et al 2008 ACS Nano 2 1950 | [21] | Gehring P et al 2017 Nano Lett. 17 7055 | [22] | Kroto H W 1987 Nature 329 529 | [23] | Poloni R et al 2012 J. Phys.: Condens. Matter 24 095501 | [24] | Tan Y Z et al 2009 Nat. Chem. 1 450 | [25] | Zhao H Y, Ma H M, Wang J and Liu Y 2016 Chin. Phys. Lett. 33 108105 | [26] | Loi M A et al 2007 Adv. Funct. Mater. 17 2111 | [27] | Guo B, Li W, Guo X, Meng X, Ma W, Zhang M and Li Y 2017 Nano Energy 34 556 | [28] | Bagheri Z 2016 Appl. Surf. Sci. 383 294 | [29] | Aygul U, Hintz H, Egelhaaf H J, Distler A, Abb S, Peisert H and Chasse T 2013 J. Phys. Chem. C 117 4992 | [30] | Maniei Z, Shakerzadeh E and Mahdavifar Z 2018 Chem. Phys. Lett. 691 360 | [31] | Luo J, Warner J H, Feng C Q, Yao Y G, Jin Z, Wang H L, Pan C F, Wang S, Yang L J, Li Y et al 2010 Appl. Phys. Lett. 96 213113 | [32] | Luo J, Tian P, Pan C T, Robertson A W, Warner J H, Hill E W and Briggs G A D 2011 ACS Nano 5 1047 | [33] | Luo J, Peng L M, Xue Z Q and Wu J L 2002 Phys. Rev. B 66 115415 | [34] | Yang H P, Yam C Y, Zhang A H, Xu Z P, Luo J and Zhu J 2015 Phys. Chem. Chem. Phys. 17 7248 | [35] | Becke A D 1993 J. Chem. Phys. 98 5648 | [36] | Lee C T, Yang W T and Parr R G 1988 Phys. Rev. B 37 785 | [37] | Krishnan R, Binkley J S, Seeger R and Pople J A 1980 J. Chem. Phys. 72 650 | [38] | Shukla M K, Dubey M and Leszczynski J 2008 ACS Nano 2 227 | [39] | Frisch M J et al 2009 Gaussian09, Revision B. 01 (Gaussian Inc. Wallingford CT) | [40] | Konev A S, Khlebnikov A F, Prolubnikov P I, Mereshchenko A S, Povolotskiy A V, Levin O V and Hirsch A 2015 Chem. Eur. J. 21 1237 | [41] | Rio J, Beeck S, Rotas G, Ahles S, Jacquemin D, Tagmatarchis N, Ewels C and Wegner H A 2018 Angew. Chem. Int. Ed. 57 6930 | [42] | Rotas G, Stranius K, Tkachenko N and Tagmatarchis N 2018 Adv. Funct. Mater. 28 1702278 | [43] | Nick F 2013 Michigan State University Computational Nanotechnology Lab Http://www.Nanotube.Msu.Edu/ fullerene/fullerene-isomers (accessed 1 August 2016) | [44] | Hu Y H and Ruckenstein E 2005 J. Am. Chem. Soc. 127 11277 | [45] | Qin H, Kim H S and Blick R H 2008 Nanotechnology 19 095504 | [46] | Shih A, Yater J, Hor C and Abrams R 1997 Appl. Surf. Sci. 111 251 | [47] | Asaka K, Nakayama T, Miyazawa K and Saito Y 2012 Carbon 50 1209 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|