|
Relativistic Spherical Plasma Waves in a Collisional and Warm Plasma
Zhong-Kui Kuang, Li-Hong Cheng, Pan-Fei Geng, Rong-An Tang, Ju-Kui Xue
Chin. Phys. Lett. 2018, 35 (12):
125202
.
DOI: 10.1088/0256-307X/35/12/125202
Under Lagrange coordinates, the relativistic spherical plasma wave in a collisional and warm plasma is discussed theoretically. Within the Lagrange coordinates and using the Maxwell and hydrodynamics equations, a wave equation describing the relativistic spherical wave is derived. The damped oscillating spherical wave solution is obtained analytically using the perturbation theory. Because of the coupled effects of spherical geometry, thermal pressure, and collision effect, the electron damps the periodic oscillation. The oscillation frequency and the damping rate of the wave are related to not only the collision and thermal pressure effect but also the space coordinate. Near the center of the sphere, the thermal pressure significantly reduces the oscillation period and the damping rate of the wave, while the collision effect can strongly influence the damping rate. Far away from the spherical center, only the collision effect can reduce the oscillation period of the wave, while the collision effect and thermal pressure have weak influence on the damping rate.
|
|
Blistering and Helium Retention of Tungsten and 5% Chromium Doped Tungsten Exposed to 60keV Helium Ions Irradiation
Shu-qin Lv, Wen-jia Han, Jian-gang Yu, Hang Zhou, Mi Liu, Chang-an Chen, Kai-gui Zhu
Chin. Phys. Lett. 2018, 35 (12):
126101
.
DOI: 10.1088/0256-307X/35/12/126101
Pure tungsten (W) and chromium doped W (W-5%Cr) are prepared by powder metallurgy. The microstructure, blistering and helium retention are investigated by x-ray diffraction, scanning electron microscopy, transmission electron microscopy and thermal desorption spectroscopy (TDS). These results show that the average size and density of helium blisters on the surface of pure W are much larger than those on the W-5%Cr alloy. Vacancy-impurity pairs can reduce the migration coefficients of vacancy and vacancy-helium complexes, and Cr may play a role of such an impurity. Moreover, the TDS result shows that the highest desorption peak moves to higher temperature, which is attributed to the He$_{m}$Cr$_{k}$V$_{n}$ complexes in the W-Cr alloy. In addition, the helium retention is found to be higher in W than in W-5%Cr.
|
|
A Calorimetric Study Assisted with First Principle Calculations of Specific Heat for Si-Ge Alloys within a Broad Temperature Range
Qing Wang, Hai-Peng Wang, De-Lu Geng, Ming-Xing Li, Bing-Bo Wei
Chin. Phys. Lett. 2018, 35 (12):
126501
.
DOI: 10.1088/0256-307X/35/12/126501
Calorimetric measurements are performed to determine the specific heat of Si-$x$ at.% Ge (where $x=0$, 10, 30, 50, 70, 90 and 100) alloys within a broad temperature range from 123 to 823 K. The measured specific heat increases dramatically at low temperatures, and the composition dependence of specific heat is evaluated from the experimental results. Meanwhile, the specific heat at constant volume, the thermal expansion, and the bulk modulus of Si and Ge are investigated by the first principle calculations combined with the quasiharmonic approximation. The negative thermal expansion is observed for both Si and Ge. Furthermore, the isobaric specific heat of Si and Ge is calculated correspondingly from 0 K to their melting points, which is verified by the measured results and accounts for the temperature dependence in a still boarder range.
|
|
Structural Evolution and Phase Change Properties of C-Doped Ge$_{2}$Sb$_{2}$Te$_{5}$ Films During Heating in Air
Long Zheng, Xing-Ming Yang, Yi-Feng Hu, Liang-Jun Zhai, Jian-Zhong Xue, Xiao-Qin Zhu, Zhi-Tang Song
Chin. Phys. Lett. 2018, 35 (12):
126801
.
DOI: 10.1088/0256-307X/35/12/126801
We elucidate the importance of a capping layer on the structural evolution and phase change properties of carbon-doped Ge$_{2}$Sb$_{2}$Te$_{5}$ (C-GST) films during heating in air. Both the C-GST films without and with a thin SiO$_{2}$ capping layer (C-GST and C-GST/SiO$_{2}$) are deposited for comparison. Large differences are observed between C-GST and C-GST/SiO$_{2}$ films in resistance-temperature, x-ray diffraction, x-ray photoelectron spectroscopy, Raman spectra, data retention capability and optical band gap measurements. In the C-GST film, resistance-temperature measurement reveals an unusual smooth decrease in resistance above 110$^{\circ}\!$C during heating. X-ray diffraction result has excluded the possibility of phase change in the C-GST film below 170$^{\circ}\!$C. The x-ray photoelectron spectroscopy experimental result reveals the evolution of Te chemical valence because of the carbon oxidation during heating. Raman spectra further demonstrate that phase changes from an amorphous state to the hexagonal state occur directly during heating in the C-GST film. The quite smooth decrease in resistance is believed to be related with the formation of Te-rich GeTe$_{4-n}$Ge$_{n}$ ($n=0$, 1) units above 110$^{\circ}\!$C in the C-GST film. The oxidation of carbon is harmful to the C-GST phase change properties.
|
|
Performance Improvement in Hydrogenated Few-Layer Black Phosphorus Field-Effect Transistors
He-Mei Zheng, Shun-Ming Sun, Hao Liu, Ya-Wei Huan, Jian-Guo Yang, Bao Zhu, Wen-Jun Liu, Shi-Jin Ding
Chin. Phys. Lett. 2018, 35 (12):
127302
.
DOI: 10.1088/0256-307X/35/12/127302
A capping layer for black phosphorus (BP) field-effect transistors (FETs) can provide effective isolation from the ambient air; however, this also brings inconvenience to the post-treatment for optimizing devices. We perform low-temperature hydrogenation on Al$_{2}$O$_{3}$ capped BP FETs. The hydrogenated BP devices exhibit a pronounced improvement of mobility from 69.6 to 107.7 cm$^{2}$v$^{-1}$s$^{-1}$, and a dramatic decrease of subthreshold swing from 8.4 to 2.6 V/dec. Furthermore, high/low frequency capacitance–voltage measurements suggest reduced interface defects in hydrogenated BP FETs. This could be due to the passivation of interface traps at both Al$_{2}$O$_{3}$/BP and BP/SiO$_{2}$ interfaces with hydrogen revealed by secondary ion mass spectroscopy.
|
|
A Triplet Resonance in Superconducting Fe$_{1.03}$Se$_{0.4}$Te$_{0.6}$
Juanjuan Liu, A. T. Savici, G. E. Granroth, K. Habicht, Y. Qiu, Jin Hu, Z. Q. Mao, Wei Bao
Chin. Phys. Lett. 2018, 35 (12):
127401
.
DOI: 10.1088/0256-307X/35/12/127401
From heavy fermion compounds and cuprates to iron pnictides and chalcogenides, a spin resonance at $\hbar{\it \Omega}_0\propto k_{\rm B}T_{\rm c}$ is a staple of nearly magnetic superconductors. Possible explanations include a two-particle bound state or loss of magnon damping in the superconducting state. While both scenarios suggest a central role for magnetic fluctuations, distinguishing them is important to identify the right theoretical framework to understand these types of unconventional superconductors. Using an inelastic neutron scattering technique, we show that the spin resonance in the optimally doped Fe$_{1.03}$Se$_{0.4}$Te$_{0.6}$ superconductor splits into three peaks in a high magnetic field, a signature of a two-particle $S=1$ triplet bound state.
|
|
Magnetic and topological transitions in three-dimensional topological Kondo insulator
Huan Li, Zhi-Yong Wang, Xiao-Jun Zheng, Yu Liu, Yin Zhong
Chin. Phys. Lett. 2018, 35 (12):
127501
.
DOI: 10.1088/0256-307X/35/12/127501
Using an extended slave-boson method, we draw a global phase diagram summarizing both magnetic phases and paramagnetic (PM) topological insulators (TIs) in a three-dimensional topological Kondo insulator (TKI). By including electron hopping (EH) up to the third neighbors, we identify four strong TI (STI) phases and two weak TI (WTI) phases. Then, the PM phase diagrams characterizing topological transitions between these TIs are depicted as functions of EH, $f$-electron energy level, and hybridization constant. We also find an insulator–metal transition from an STI phase that has surface Fermi rings and spin textures in qualitative agreement with the TKI candidate SmB$_6$. In the weak hybridization regime, antiferromagnetic (AF) order naturally arises in the phase diagrams. Depending on how the magnetic boundary crosses the PM topological transition lines, AF phases are classified into the AF topological insulator (AFTI) and the non-topological AF insulator, according to their $\mathcal{Z}_2$ indices. In two small regions of parameter space, two distinct topological transition processes between AF phases occur, leading to two types of AFTIs showing distinguishable surface dispersions around their Dirac points.
|
18 articles
|