Chin. Phys. Lett.  2018, Vol. 35 Issue (10): 105201    DOI: 10.1088/0256-307X/35/10/105201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Collisional Effects on Drift Wave Microturbulence in Tokamak Plasmas
Wei Hu1,2,3**, Hong-Ying Feng4, Chao Dong2,3
1Department of Modern Physics, University of Science and Technology of China, Hefei 230026
2Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
3University of Chinese Academy of Sciences, Beijing 100049
4College of Mechanical and Power Engineering, China Three Gorges University, Yichang 443002
Cite this article:   
Wei Hu, Hong-Ying Feng, Chao Dong 2018 Chin. Phys. Lett. 35 105201
Download: PDF(563KB)   PDF(mobile)(558KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Collisional effects on the microturbulence, excited by the electrostatic drift-wave instability, are investigated through first-principle large scale gyrokinetic particle simulations using the realistic discharge parameters of the DIII–D Tokamak. In the linear simulations, the growth rates of the drift waves are decreased by the collisions compared to the collisionless simulations in the lower and higher $T_{\rm e}$ plasmas. In the lower $T_{\rm e}$ plasma, the collisions can promote the transition of the drift wave regime from the TEM-dominant instability to the ITG-dominant instability. The zonal flows are excited by the microturbulence and work as a modulation mechanism for the microturbulence in the nonlinear simulations. Microturbulence can excite high frequency zonal flows in the collisionless plasmas, which is in agreement with the theoretical work. In the lower $T_{\rm e}$ plasma, the collisions decrease the microturbulence in the nonlinear saturated stage compared to the collisionless simulations, which are beneficial for the plasma confinement. In the higher $T_{\rm e}$ plasma, the final saturated microturbulence shows a slight change.
Received: 10 June 2018      Published: 15 September 2018
PACS:  52.35.Ra (Plasma turbulence)  
  52.55.Fa (Tokamaks, spherical tokamaks)  
  52.35.Kt (Drift waves)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11705275, 11675257 and 11675256, the Strategic Priority Research Program of the Chinese Academy of Science under Grant No QYZDJ-SSW-SYS016, and the External Cooperation Program of the Chinese Academy of Sciences under Grant No 112111KYSB20160039.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/10/105201       OR      https://cpl.iphy.ac.cn/Y2018/V35/I10/105201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei Hu
Hong-Ying Feng
Chao Dong
[1]http://www.iter.org
[2]Lin Z et al 1998 Science 281 1835
[3]Dimit A M et al 2000 Phys. Plasmas 7 969
[4]Zhang W, Lin Z and Chen L 2008 Phys. Rev. Lett. 101 095001
[5]Hahm T S and Tang W M 1991 Phys. Fluids B 3 989
[6]Xiao Y and Lin Z H 2009 Phys. Rev. Lett. 103 085004
[7]Dannert T and Jenko F 2005 Phys. Plasmas 12 072309
[8]Zhang W L, Decyk V, Holod I, Xiao Y, Lin Z H and Chen L 2010 Phys. Plasmas 17 055902
[9]Xiao Y, Holod I, Zhang W L, Klasky S and Lin Z H 2010 Phys. Plasmas 17 022302
[10]Ryter F, Angioni C, Peeters A, Leuterer F, Fahrbach H U and Suttrop W 2005 Phys. Rev. Lett. 95 085001
[11]Conway G D 2008 Plasma Phys. Control. Fusion 50 124026
[12]Lin Z, Hahm T S, Lee W W, Tang W M and Diamond P H 1999 Phys. Rev. Lett. 83 3645
[13]Falchetto G L and Ottaviani M 2004 Phys. Rev. Lett. 92 025002
[14]Dif-Pradalier G, Grandgirard V, Sarazin Y, Garbet X and Ghendrih P 2009 Phys. Rev. Lett. 103 065002
[15]Xiao Y, Catto P J and Molvig K 2007 Phys. Plasmas 14 032302
[16]Lang J Y, Chen Y and Parker S E 2007 Phys. Plasmas 14 082315
[17]Ernst D, Basse N, Dorl W, Fiore C, Lin L, Long A, Porkolab M, Zeller K and Zhurovich K 2009 MIT Plasma Science & Fusion Center
[18]Ernst D, Bonoli P, Catto P, Dorl, W, Fiore C, Granetz R, Greenwald M, Hubbard A, Porkolab M, Redi M, Rice J, Zhurovich K and Alcator C-Mod Group 2004 Phys. Plasmas 11 2637
[19]Greenwald M, Angioni C, Hughes J, Terry J and Weisen H 2007 Nucl. Fusion 47 L26
[20]Fable E, Angioni C and Sauter O 2010 Plasma Phys. Control. Fusion 52 015007
[21]Liao X, Lin Z, Holod I, Li B and Sun G 2016 Phys. Plasmas 23 122305
[22]Pace D C, Austin M E, Bass E M, Budny R V, Heidbrink W W, Hillesheim J C, Holcomb C T, Gorelenkova M, Grierson B A, McCune D C, McKee G R, Muscatello C M, Park J M, Petty C C, Rhodes T L, Staebler G M, Suzuki T, Van Zeel, M A, Waltz R E, Wang G, White A E, Yan Z, Yuan X and Zhu Y B 2013 Phys. Plasmas 20 056108
[23]Xu X Q and Rosenbluth M N 1991 Phys. Fluids 3 627
[24]Dimits A M and Cohen B I 1994 Phys. Rev. E 49 709
[25]Hinton F and Hazeltine R 1976 Rev. Mod. Phys. 48 239
[26]Lin Z, Tang W M and Lee W W 1995 Phys. Plasmas 2 2975
[27]Sugama H and Watanabe T H 2006 Phys. Plasmas 13 012501
[28]Qiu Z, Chen L and Zonca F 2009 Plasma Phys. Control. Fusion 51 012001
[29]Gao Z, Wang P and Sanuki H 2008 Phys. Plasmas 15 074502
[30]Gao Z 2010 Phys. Plasmas 17 092503
Related articles from Frontiers Journals
[1] Wei Hu, Hong-Ying Feng, Wen-Lu Zhang. Comparison of ITG and TEM Microturbulence in DIII–D Tokamak[J]. Chin. Phys. Lett., 2019, 36(8): 105201
[2] Song Chai, Yu-Hong Xu, Zhe Gao, Wen-Hao Wang, Yang-Qing Liu, Yi Tan. Nonlinear Energy Cascading in Turbulence during the Internal Reconnection Event at the Sino-United Spherical Tokamak[J]. Chin. Phys. Lett., 2017, 34(2): 105201
[3] Zhen-Wei Xia, Chun-Hua Li, Dan-Dan Zou, Wei-Hong Yang. Helical Mode Absolute Statistical Equilibrium of Ideal Three-Dimensional Hall Magnetohydrodynamics[J]. Chin. Phys. Lett., 2017, 34(1): 105201
[4] ZHANG Xiao-Hui, LIU A-Di, ZHOU CHU, HU Jian-Qiang, WANG Ming-Yuan, YU Chang-Xuan, LIU Wan-Dong, LI Hong, LAN Tao, XIE Jin-Lin. Comparison of Three Methods in Extracting Coherent Modes from a Doppler Backscatter System[J]. Chin. Phys. Lett., 2015, 32(12): 105201
[5] WANG Guan-Qiong, MA Jun, WEILAND J., ZAGORODNY A.. Excitation of Zonal Flows by ion-temperature-gradient Modes Excited by the Fluid Resonance[J]. Chin. Phys. Lett., 2015, 32(11): 105201
[6] SUN Tian-Tian, CHEN Shao-Yong, WANG Zhan-Hui, PENG Xiao-Dong, HUANG Jie, MOU Mao-Lin, TANG Chang-Jian. Anomalous Convection Reversal due to Turbulence Transition in Tokamak Plasmas[J]. Chin. Phys. Lett., 2015, 32(03): 105201
[7] A. A. Azooz,Y. A. Al-Jawaady,Z. T. Ali. Pressure and Discharge-Voltage Dependence of Self-Sustaining Pulses in Air-Glow Discharge[J]. Chin. Phys. Lett., 2012, 29(5): 105201
[8] CHEN Ran, XIE Jin-Lin**, YU Chang-Xuan, LIU A-Di, LAN Tao, ZHANG Shou-Biao, HU Guang-Hai, LI Hong, LIU Wan-Dong . Identification of Low-Frequency Zonal Flow in a Linear Magnetic Plasma Device[J]. Chin. Phys. Lett., 2011, 28(2): 105201
[9] XU Hui, SHENG Zheng-Ming, ZHENG Jun, XIA Yun-Jie. Generation of Broadband High Harmonics through Linear Mode Conversion in Inhomogeneous Plasmas[J]. Chin. Phys. Lett., 2010, 27(4): 105201
[10] DONG Li-Fang, FAN Wei-Li, WANG Hui-Juan, ZHANG Qing-Li, WANG Long. Nonlinear Interaction and Coherent Structure in Tokamak Plasma Turbulence[J]. Chin. Phys. Lett., 2006, 23(11): 105201
[11] LU Rong-Hua, PAN Ge-Sheng, WANG Zhi-Jiang, WEN Yi-Zhi, LIU Wan-Dong, WAN Shu-De, YU Chang-Xuan, WANG Jun, XIAO De-Long, XU Min. Effects of Dual-Electrode Biasing on Er in a Toroidal Plasma[J]. Chin. Phys. Lett., 2005, 22(6): 105201
[12] LIU Feng, DONG Jia-Qi, GAO Zhe. Electron Temperature Gradient Driven Instability in High Beta Plasmas of a Sheared Slab[J]. Chin. Phys. Lett., 2005, 22(5): 105201
[13] PANG Jin-Qiao, WU Ze-Qing, YAN Jun, HAN Guo-Xing. Theoretical Calculations of Opacity for Non-Local-Thermodynamic-Equilibrium Plasmas[J]. Chin. Phys. Lett., 2004, 21(10): 105201
[14] XU Guo-Sheng, WAN Bao-Nian, SONG-Mei. Naturally Occurring Velocity Shear Layer at the Plasma Edge of HT-7 Tokamak[J]. Chin. Phys. Lett., 2004, 21(1): 105201
[15] XU Guo-Sheng, WAN Bao-Nian, SONG-Mei. First Measurement of the Magnetic Turbulence Induced Reynolds Stress in a Tokamak[J]. Chin. Phys. Lett., 2003, 20(12): 105201
Viewed
Full text


Abstract