Chin. Phys. Lett.  2018, Vol. 35 Issue (10): 104701    DOI: 10.1088/0256-307X/35/10/104701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Viscous Slip MHD Flow over a Moving Sheet with an Arbitrary Surface Velocity
Tiegang Fang**, Fujun Wang
Mechanical and Aerospace Engineering Department, North Carolina State University, Raleigh 27695, USA
Cite this article:   
Tiegang Fang, Fujun Wang 2018 Chin. Phys. Lett. 35 104701
Download: PDF(463KB)   PDF(mobile)(456KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The magnetohydrodynamic (MHD) flow induced by a stretching or shrinking sheet under slip conditions is studied. Analytical solutions based on the boundary layer assumption are obtained in a closed form and can be applied to a flow configuration with any arbitrary velocity distributions. Seven typical sheet velocity profiles are employed as illustrating examples. The solutions to the slip MHD flow are derived from the general solution and discussed in detail. Different from self-similar boundary layer flows, the flows studied in this work have solutions in explicit analytical forms. However, the current flows require special mass transfer at the wall, which is determined by the moving velocity of the sheet. The effects of the slip parameter, the mass transfer at the wall, and the magnetic field on the flow are also demonstrated.
Received: 17 June 2018      Published: 15 September 2018
PACS:  47.10.ad (Navier-Stokes equations)  
  47.15.Cb (Laminar boundary layers)  
  52.30.Cv (Magnetohydrodynamics (including electron magnetohydrodynamics))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/10/104701       OR      https://cpl.iphy.ac.cn/Y2018/V35/I10/104701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Tiegang Fang
Fujun Wang
[1]Fisher E G 1976 Extrusion of Plastics (New York: Wiley)
[2]Altan T, Oh S and Gegel H 1979 Metal Forming: Fundamentals and Applications (Metals Park, OH: American Society of Metals)
[3]Jaluria Y 2018 Continuous Materials Processing. In Advanced Materials Processing and Manufacturing (Cham: Springer) p 107
[4]Sakiadis B C 1961 AIChE J. 7 26
[5]Tsou F K, Sparrow E M and Goldstain R J 1967 Int. J. Heat Mass Transfer 10 219
[6]Crane L J 1970 Z. Angew. Math. Phys. 21 645
[7]Chen C K and Char M I 1988 J. Math. Anal. Appl. 135 568
[8]Fang T 2008 Int. J. Heat Mass Transfer 51 2199
[9]Magyari E and Keller B 2000 Eur. J. Mech. B 19 109
[10]Liao S J 2005 Int. J. Heat Mass Transfer 48 2529
[11]Wang C Y 1991 Annu. Rev. Fluid Mech. 23 159
[12]Fang T, Zhang J and Yao S 2009 Chin. Phys. Lett. 26 014703
[13]Asghar S, Afzal S and Ahmad A 2017 Chin. Phys. B 26 014704
[14]Nadeem S and Hayat T 2016 Chin. Phys. B 25 114701
[15]Bhattacharyya K, Hayat T and Alsaedi A 2014 Chin. Phys. B 23 124701
[16]Ahmad A, Asghar S and Alsaedi A 2014 Chin. Phys. B 23 074401
[17]Gal-el-Hak M 1999 J. Fluids Eng. Trans. ASME 121 5
[18]Yoshimura A and Prudhomme R K 1988 J. Rheol. 32 53
[19]Andersson H I 1995 Acta Mech. 113 241
[20]Pop I and Na T Y 1998 Mech. Res. Commun. 25 263
[21]Liao S J 2003 J. Fluid Mech. 488 189
[22]Sajid M, Hayat T and Javed T 2007 Nonlinear Dyn. 51 259
[23]Fang T G, Zhang J and Yao S S 2009 Commun. Nonlinear Sci. Numer. Simul. 14 3731
[24]Fang T G, Zhang J and Yao S S 2010 Chin. Phys. Lett. 27 124702
[25]Fang T G and Aziz A 2010 Z. Naturforsch. A 65 1087
[26]Weidman P D and Magyari E 2010 Acta Mechanica 209 353
[27]Fang T G ang Zhong Y F 2010 Commun. Nonlinear Sci. Numer. Simul. 15 3768
[28]Ahmad A and Asghar S 2011 Appl. Math. Lett. 24 1905
[29]Magyari E and Kumaran V 2010 Commun. Nonlinear Sci. Numer. Simul. 15 3237
[30]Vleggaar J 1977 Chem. Eng. Sci. 32 1517
[31]Ali M E 1995 Int. J. Heat Fluid Flow 16 280
[32]Dean M M 1980 Annu. Rev. Fluid Mech. 12 365
[33]Lage J L and Bejan A 1990 ASME J. Heat Transfer 112 92
[34]Galtier S 2016 Introduction to Modern Magnetohydrodynamics (Cambridge: Cambridge University Press)
Related articles from Frontiers Journals
[1] Tiegang Fang, Fujun Wang. Unsteady Liquid Film Flow with a Prescribed Free-Surface Velocity[J]. Chin. Phys. Lett., 2019, 36(1): 104701
[2] GAO Zhi, SHEN Yi-Qing. Analysis and Application of High Resolution Numerical Perturbation Algorithm for Convective-Diffusion Equation[J]. Chin. Phys. Lett., 2012, 29(10): 104701
[3] Azeem Shahzad, Ramzan Ali, and Masood Khan. On the Exact Solution for Axisymmetric Flow and Heat Transfer over a Nonlinear Radially Stretching Sheet[J]. Chin. Phys. Lett., 2012, 29(8): 104701
[4] LI Shao-Wu, WANG Jian-Ping. Finite Spectral Semi-Lagrangian Method for Incompressible Flows[J]. Chin. Phys. Lett., 2012, 29(2): 104701
[5] FANG Tie-Gang*, ZHANG Ji, ZHONG Yong-Fang, TAO Hua . Unsteady Viscous Flow over an Expanding Stretching Cylinder[J]. Chin. Phys. Lett., 2011, 28(12): 104701
[6] Tiegang FANG**, Shanshan YAO . Viscous Swirling Flow over a Stretching Cylinder[J]. Chin. Phys. Lett., 2011, 28(11): 104701
[7] FANG Tie-Gang, ZHANG Ji, YAO Shan-Shan. Slip Magnetohydrodynamic Viscous Flow over a Permeable Shrinking Sheet[J]. Chin. Phys. Lett., 2010, 27(12): 104701
[8] FANG Tie-Gang, ZHANG Ji, YAO Shan-Shan. Viscous Flow over an Unsteady Shrinking Sheet with Mass Transfer[J]. Chin. Phys. Lett., 2009, 26(1): 104701
[9] GUO Bo-Ling, YANG Gan-Shan, PU Xue-Ke. Blow-up and Global Smooth Solutions for Incompressible Three-Dimensional Navier--Stokes Equations[J]. Chin. Phys. Lett., 2008, 25(6): 104701
[10] W. Marques Jr.. Is Brenner's Modification to the Classical Navier--Stokes Equations Able to Describe Sound Propagation in Gases?[J]. Chin. Phys. Lett., 2008, 25(4): 104701
Viewed
Full text


Abstract