|
Transition Dipole Moment Measurements of Ultracold Photoassociated $^{85}$Rb$^{133}$Cs Molecules by Depletion Spectroscopy
Juan-Juan Cao, Ting Gong, Zhong-Hao Li, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia
Chin. Phys. Lett. 2018, 35 (10):
103301
.
DOI: 10.1088/0256-307X/35/10/103301
The transition dipole moments (TDMs) of ultracold $^{85}$Rb$^{133}$Cs molecules between the lowest vibrational ground level, $X^{1}{\it \Sigma}^{+}$ ($v=0$, $J=1$), and the two excited rovibrational levels, $2^{3}{\it \Pi}_{0^{+}}$ ($v'=10$, $J'=2$) and $2^{1}{\it \Pi}_{1}$ ($v'=22$, $J'=2$), are measured using depletion spectroscopy. The ground-state $^{85}$Rb$^{133}$Cs molecules are formed from cold mixed component atoms via the $2^{3}{\it \Pi}_{0^{-}}$ ($v=11$, $J=0$) short-range level, then detected by time-of-flight mass spectrum. A home-made external-cavity diode laser is used as the depletion laser to couple the ground level and the two excited levels. Based on the depletion spectroscopy, the corresponding TDMs are then derived to be 3.5(2)$\times$$10^{-3}$$ea_{0}$ and 1.6(1)$\times$$10^{-2}$$ea_{0}$, respectively, where $ea_{0}$ represents the atomic unit of electric dipole moment. The enhance of TDM with nearly a factor of 5 for the $2^{1}{\it \Pi}_{1}$ ($v'=22$, $J'=2$) excited level means that it has stronger coupling with the ground level. It is meaningful to find more levels with much more strong coupling strength by the represented depletion spectroscopy to realize direct stimulated Raman adiabatic passage transfer from scattering atomic states to deeply molecular states.
|
|
First-Principles Study of Magnetic Properties of TM$_{13}$ and TM$_{13}$@Au$_{32}$ Clusters (TM=Mn, Co)
Yi-Bo Li, Li-Jin Zeng, Chun-Xiang Zhao, Chun-Yao Niu
Chin. Phys. Lett. 2018, 35 (10):
103601
.
DOI: 10.1088/0256-307X/35/10/103601
The structural and magnetic properties of TM$_{13}$ and TM$_{13}$@Au$_{32}$ clusters (TM=Mn, Co) are studied by first-principles calculations. We find that the Au$_{32}$ cluster can tune not only the magnetic moment but also the magnetic coupling properties between the TM atoms of the TM cluster. The Au$_{32}$ cluster can increase the net magnetic moment of Mn$_{13}$ clusters while reducing that of Co$_{13}$ clusters. The interaction between Au and Mn atoms induces more Mn atoms to form spin parallel coupling, resulting in an increase of the total magnetic moment of Mn$_{13}$ clusters, while for the Co$_{13}$ clusters, the interaction between Au and Co atoms does not change the magnetic coupling states between the Co atoms, but reduces the magnetic moment of the Co atoms, leading to a decrease of the total magnetic moment of this system. Our findings indicate that the encapsulation of Au$_{32}$ clusters can not only raise the chemical stability of TM clusters, but also can tune their magnetic coupling properties and magnetic moment, which enables such systems to be widely applied in fields of spintronics and medical science.
|
|
Q-Switched Erbium-Doped Fiber Laser Using Cadmium Selenide Coated onto Side-Polished D-Shape Fiber as Saturable Absorber
M. F. M. Rusdi, M. B. H. Mahyuddin, A. A. Latiff , H. Ahmad, S. W. Harun
Chin. Phys. Lett. 2018, 35 (10):
104201
.
DOI: 10.1088/0256-307X/35/10/104201
A stable Q-switched erbium doped fiber laser emitting at 1558 nm is demonstrated using a cadmium selenide (CdSe) material coated onto a side-polished D-shape fiber as the saturable absorber (SA). By elevating the input pump power from the threshold of 91 mW to the maximum available power of 136 mW, a pulse train with a maximum repetition rate of 57.44 kHz, minimum pulse width of 3.76 μs, maximum average output power of 7.99 mW, maximum pulse energy of 0.1391 $\mu$J, and maximum peak power of 36.99 mW are obtained. The signal-to-noise ratio of the spectrum is measured to be around 75 dB. This CdSe based SA is simple, robust, and reliable, and thus suitable for making a portable pulse laser source.
|
|
Tunable Supercontinuum Generated in a Yb$^{3+}$-Doped Microstructure Fiber Pumped by Ti:Sapphire Femtosecond Laser
Wei Wang, Fan-Chao Meng, Yuan Qing, Shi Qiu, Ting-Ting Dong, Wei-Zhen Zhu, Yu-Ting Zuo, Ying Han, Chao Wang, Yue-Feng Qi, Lan-Tian Hou
Chin. Phys. Lett. 2018, 35 (10):
104202
.
DOI: 10.1088/0256-307X/35/10/104202
We experimentally demonstrate that a tunable supercontinuum (SC) can be generated in a Yb$^{3+}$-doped microstructure fiber by the concept of wavelength conversion with a Ti:sapphire femtosecond (fs) laser as the pump. Experimental results show that an emission light around 1040 nm in an anomalous dispersion region is first generated and amplified by fs pulses in the normal dispersion region. Then, SC spectra from 1100 to 1380 nm and 630 to 840 nm can be achieved by combined effects of higher-order soliton fission and Raman soliton self-frequency shift in the anomalous dispersion region and self-phase modulation, dispersive wave, and four-wave mixing in the normal dispersion region. It is also demonstrated that the 20 nm change of pump results in a 280 nm broadband shift of soliton and the further red-shift of soliton is limited by OH$^{-}$ absorption at 1380 nm.
|
|
Effects of Metal Absorber Thermal Conductivity on Clear Plastic Laser Transmission Welding
Min-Qiu Liu, De-Qin Ouyang, Chun-Bo Li, Hui-Bin Sun, Shuang-Chen Ruan
Chin. Phys. Lett. 2018, 35 (10):
104205
.
DOI: 10.1088/0256-307X/35/10/104205
In our previous study, metals have been used as absorbers in the clear plastic laser transmission welding. The effects of metal thermal conductivity on the welding quality are investigated in the present work. Four metals with distinctly different thermal conductivities, i.e., titanium, nickel, molybdenum, and copper, are selected as light absorbers. The lap welding is conducted with an 808 nm diode laser and simulation experiments are also conducted. Nickel electroplating test is carried out to minimize the side-effects from different light absorptivities of different metals. The results show that the welding with an absorber of higher thermal conductivity can accommodate higher laser input power before smoking, which produces a wider and stronger welding seam. The positive role of the higher thermal conductivity can be attributed to the fact that a desirable thermal field distribution for the molecular diffusion and entanglement is produced from the case with a high thermal conductivity.
|
|
Collisional Effects on Drift Wave Microturbulence in Tokamak Plasmas
Wei Hu, Hong-Ying Feng, Chao Dong
Chin. Phys. Lett. 2018, 35 (10):
105201
.
DOI: 10.1088/0256-307X/35/10/105201
Collisional effects on the microturbulence, excited by the electrostatic drift-wave instability, are investigated through first-principle large scale gyrokinetic particle simulations using the realistic discharge parameters of the DIII–D Tokamak. In the linear simulations, the growth rates of the drift waves are decreased by the collisions compared to the collisionless simulations in the lower and higher $T_{\rm e}$ plasmas. In the lower $T_{\rm e}$ plasma, the collisions can promote the transition of the drift wave regime from the TEM-dominant instability to the ITG-dominant instability. The zonal flows are excited by the microturbulence and work as a modulation mechanism for the microturbulence in the nonlinear simulations. Microturbulence can excite high frequency zonal flows in the collisionless plasmas, which is in agreement with the theoretical work. In the lower $T_{\rm e}$ plasma, the collisions decrease the microturbulence in the nonlinear saturated stage compared to the collisionless simulations, which are beneficial for the plasma confinement. In the higher $T_{\rm e}$ plasma, the final saturated microturbulence shows a slight change.
|
|
Computational Prediction to Two-Dimensional SnAs
Dawei Zhou, Yangbing Zheng, Chunying Pu, Zhuo Wang, Xin Tang
Chin. Phys. Lett. 2018, 35 (10):
107101
.
DOI: 10.1088/0256-307X/35/10/107101
By means of the particle-swarm optimization method and density functional theory calculations, the lowest-energy structure of SnAs is determined to be a bilayer stacking system and the atoms on top of each other are of the same types. Using the hybrid functional of Heyd–Scuseria–Ernzerhof, SnAs is calculated to be a semiconductor with an indirect band gap of 1.71 eV, which decreases to 1.42 eV with the increase of the bi-axial tensile stress up to 2%, corresponding to the ideal value of 1.40 eV for potential photovoltaic applications. Based on the deformation potential theory, the two-dimensional (2D) SnAs has high electron motilities along $x$ and $y$ directions ($1.63\times10^{3}$ cm$^{2}$V$^{-1}$s$^{-1}$). Our calculated results suggest that SnAs can be viewed as a new type of 2D materials for applications in optoelectronics and nanoelectronic devices.
|
|
Impurity Effects at Surfaces of a Photon-Dressed Bi$_2$Se$_3$ Thin Film
Qiu-Shi Wang, Bin Zhang, Wei-Zhu Yi, Meng-Nan Chen, Baigeng Wang, R. Shen
Chin. Phys. Lett. 2018, 35 (10):
107201
.
DOI: 10.1088/0256-307X/35/10/107201
We investigate the impurity effects on surfaces of a thin film topological insulator, applied by an off-resonant circular polarized light. It is found that the off-resonant driving induces a quantized total Hall conductivity, when the driving strength is larger than a critical value and the Fermi level lies in the band gap, indicating that our system is converted into the topological phase. We also find that with the increasing disorder strength, the Dirac masses of top and bottom surfaces are renormalized and then fixed to half of their initial values, respectively, which will shrink the widths of the half-integer plateau of anomalous Hall conductivities.
|
|
Global Statistical Study of Ionospheric Waves Based on COSMIC GPS Radio Occultation Data
Xuan-Yun Zeng, Xiang-Hui Xue, Xin-An Yue, Ming-Jiao Jia, Bing-Kun Yu, Jian-Fei Wu, Chao Yu
Chin. Phys. Lett. 2018, 35 (10):
109401
.
DOI: 10.1088/0256-307X/35/10/109401
Extracting and parameterizing ionospheric waves globally and statistically is a longstanding problem. Based on the multichannel maximum entropy method (MMEM) used for studying ionospheric waves by previous work, we calculate the parameters of ionospheric waves by applying the MMEM to numerously temporally approximate and spatially close global-positioning-system radio occultation total electron content profile triples provided by the unique clustered satellites flight between years 2006 and 2007 right after the constellation observing system for meteorology, ionosphere, and climate (COSMIC) mission launch. The results show that the amplitude of ionospheric waves increases at the low and high latitudes ($\sim$0.15 TECU) and decreases in the mid-latitudes ($\sim$0.05 TECU). The vertical wavelength of the ionospheric waves increases in the mid-latitudes (e.g., $\sim$50 km at altitudes of 200–250 km) and decreases at the low and high latitudes (e.g., $\sim$35 km at altitudes of 200–250 km). The horizontal wavelength shows a similar result (e.g., $\sim$1400 km in the mid-latitudes and $\sim$800 km at the low and high latitudes).
|
22 articles
|