CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Charge Density Wave States and Structural Transition in Layered Chalcogenide TaSe$_{2-x}$Te$_{x}$ |
Lin-Lin Wei1,2, Shuai-Shuai Sun1, Kai Sun1,2, Yu Liu3, Ding-Fu Shao3, Wen-Jian Lu3, Yu-Ping Sun3,4, Huan-Fang Tian1, Huai-Xin Yang1,2** |
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049 3Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 4High Magnetic Laboratory, Chinese Academy of Sciences, Hefei 230031
|
|
Cite this article: |
Lin-Lin Wei, Shuai-Shuai Sun, Kai Sun et al 2017 Chin. Phys. Lett. 34 086101 |
|
|
Abstract The structural features and three-dimensional nature of the charge density wave (CDW) state of the layered chalcogenide 1T-TaSe$_{2-x}$Te$_{x}$ ($0\le x\le 2.0$) are characterized by Cs-corrected transmission electron microscopy measurements. Notable changes of both average structure and the CDW state arising from Te substitution for Se are clearly demonstrated in samples with $x>0.3$. The commensurate CDW state characterized by the known star-of-David clustering in the 1T-TaSe$_{2}$ crystal becomes visibly unstable with Te substitution and vanishes when $x=0.3$. The 1T-TaSe$_{2-x}$Te$_{x}$ ($0.3\le x\le 1.3$) samples generally adopt a remarkable incommensurate CDW state with monoclinic distortion, which could be fundamentally in correlation with the strong $q$-dependent electron–phonon coupling-induced period-lattice-distortion as identified in TaTe$_{2}$. Systematic analysis demonstrates that the occurrence of superconductivity is related to the suppression of the commensurate CDW phase and the presence of discommensuration is an evident structural feature observed in the superconducting samples.
|
|
Received: 05 June 2017
Published: 22 July 2017
|
|
PACS: |
61.05.J-
|
(Electron diffraction and scattering)
|
|
71.45.Lr
|
(Charge-density-wave systems)
|
|
89.75.Fb
|
(Structures and organization in complex systems)
|
|
|
Fund: Supported by the National Basic Research Program of China under Grant Nos 2015CB921300 and 2012CB821404, the National Key Research and Development Program of China under Grant Nos 2016YFA0300300 and 2016YFA0300404, the National Natural Science Foundation of China under Grant Nos 11474323, 11604372, 11274368, 91221102, 11190022, 11674326 and 91422303, and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences under Grant No XDB07020000. |
|
|
[1] | Di Salvo F J, Moncton D E, Wilson J A and Mahajan S 1976 Phys. Rev. B 14 1543 | [2] | Joe Y I, Chen X M, Ghaemi P, Finkelstein K D, De la Pena G A, Gan Y, Lee J C T, Yuan S, Geck J, MacDougall G J, Chiang T C, Cooper S L, Fradkin E and Abbamonte P 2014 Nat. Phys. 10 421 | [3] | Rossnagel K, Rotenberg E, Koh H, Smith N and Kipp L 2005 Phys. Rev. B 72 121103 | [4] | Grosse C, Atkins R, Kirmse H, Mogilatenko A, Neumann W and Johnson D C 2013 J. Alloys Compd. 579 507 | [5] | Liu Y, Ang R, Lu W J, Song W H, Li L J and Sun Y P 2013 Appl. Phys. Lett. 102 192602 | [6] | Ang R, Miyata Y, Ieki E, Nakayama K, Sato T, Liu Y, Lu W J, Sun Y P and Takahashi T 2013 Phys. Rev. B 88 115145 | [7] | Li L J, Lu W J, Zhu X D, Ling L S, Qu Z and Sun Y P 2012 Europhys. Lett. 97 67005 | [8] | Wilson J, Di Salvo F J and Mahajan S 1974 Phys. Rev. Lett. 32 882 | [9] | Eibschutz M 1992 Phys. Rev. B 45 10914 | [10] | Wilson J A, Di Salvo F J and Mahajan S 2001 Adv. Phys. 50 1171 | [11] | Ritschel T, Trinckauf J, Koepernik K, Büchner B, Zimmermann M v, Berger H, Joe Y I, Abbamonte P and Geck J 2015 Nat. Phys. 11 328 | [12] | Battaglia C, Cercellier H, Clerc F, Despont L, Garnier M G, Koitzsch C, Aebi P, Berger H, Forró L and Draxl C A 2005 Phys. Rev. B 72 195114 | [13] | Sharma S, Nordström L and Johansson B 2002 Phys. Rev. B 66 195101 | [14] | Doublet M L, Remy S and Lemoigno F 2000 J. Chem. Phys. 113 5879 | [15] | Vernes A, Ebert H, Bensch W, Heid W and Näther C 1998 J. Phys.: Condens. Matter 10 761 | [16] | Sipos B, Kusmartseva A F, Akrap A, Berger H, Forró L and Tutiš E 2008 Nat. Mater. 7 960 | [17] | Morosan E, Zandbergen H W, Dennis B S J, Bos W G, Onose Y, Klimczuk T, Ramirez A P, Ong N P and Cava R J 2006 Nat. Phys. 2 544 | [18] | Morosan E, Wagner K E, Zhao L L, Hor Y, Williams A J, Tao J, Zhu Y and Cava R J 2010 Phys. Rev. B 81 094524 | [19] | Di Salvo F J, Wilson J A, Bagley B G and Waszczak J V 1975 Phys. Rev. B 12 2220 | [20] | Ritschel T, Trinckauf J, Garbarino G, Hanfland M, Zimmermann M v, Berger H, Búchner B and Geck J 2013 Phys. Rev. B 87 125135 | [21] | Ang R, Tanaka Y, Ieki E, Nakayama K, Sato T, Li L J, Lu W J, Sun Y P and Takahashi T 2012 Phys. Rev. Lett. 109 176403 | [22] | Ang R, Wang Z C, Chen C L, Tang J, Liu N, Liu Y, Lu W J, Sun Y P, Mori T and Ikuhara Y 2015 Nat. Commun. 6 6091 | [23] | Luo H, Xie W, Tao J, Inoue H, Gyenis A, Krizan J W, Yazdani A, Zhu Y and Cava R J 2015 Proc. Natl. Acad. Sci. USA 112 1174 | [24] | Liu Y, Shao D F, Li L J, Lu W J, Zhu X D, Tong P, Xiao R C, Ling L S, Xi C Y, Pi L, Tian H F, Yang H X, Li J Q, Song W H, Zhu X B and Sun Y P 2016 Phys. Rev. B 94 045131 | [25] | Sörgel T, Nuss J, Wedig U, Kremer R K and Jansen M 2006 Mater. Res. Bull. 41 987 | [26] | Crewe A V, Wall J and Langmore J 1970 Science 168 1338 | [27] | Pennycook S J and Boatner L A 1988 Nature 336 565 | [28] | McMillan W 1976 Phys. Rev. B 14 1496 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|