PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
|
|
|
|
A Method of Using a Carbon Fiber Spiral-Contact Electrode to Achieve Atmospheric Pressure Glow Discharge in Air |
Wen-Zheng Liu**, Shuai Zhao, Mao-Lin Chai, Jiang-Qi Niu |
School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044
|
|
Cite this article: |
Wen-Zheng Liu, Shuai Zhao, Mao-Lin Chai et al 2017 Chin. Phys. Lett. 34 085203 |
|
|
Abstract During discharge, appropriately changing the development paths of electron avalanches and increasing the number of initial electrons can effectively inhibit the formation of filamentary discharge. Based on the aforementioned phenomenon, we propose a method of using microdischarge electrodes to produce a macroscopic discharge phenomenon. In the form of an asymmetric structure composed of a carbon fiber electrode, an electrode structure of carbon fiber spiral-contact type is designed to achieve an atmospheric pressure glow discharge in air, which is characterized by low discharge voltage, low energy consumption, good diffusion and less ozone generation.
|
|
Received: 30 March 2017
Published: 22 July 2017
|
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 51577011. |
|
|
[1] | Jung J S and Kim J G 2017 J. Electrostat. 86 12 | [2] | Stepczyńska M 2016 Plasma Processes Polym. 13 1080 | [3] | Ito Y et al 2008 Appl. Phys. Express 1 067009 | [4] | Liu W Z, Lei X and Zhao Q 2016 Plasma Sci. Technol. 18 35 | [5] | Luo H Y, Liang Z, Lv B, Wang X X, Guan Z C and Wang L M 2007 Appl. Phys. Lett. 91 221504 | [6] | Li X C, Niu D Y, Xu L F, Jia P Y and Chang Y Y 2012 Chin. Phys. B 21 075204 | [7] | Li B, Chen Q, Liu Z W and Wang Z D 2011 Chin. Phys. Lett. 28 015201 | [8] | Ouyang J T, Duan X X, Xu S W and He F 2012 Chin. Phys. Lett. 29 025201 | [9] | Moon S Y, Choe W and Kang B K 2004 Appl. Phys. Lett. 84 188 | [10] | Packan D 2004 PhD Dissertation (Stanford: Stanford University) | [11] | Liu W Z, Sun G L, Li C H and Zhang R R 2014 Phys. Plasmas 21 043514 | [12] | Lu X P, Jiang Z H, Xiong Q, Tang Z Y and Pan Y 2008 Appl. Phys. Lett. 92 151504 | [13] | Li X, Tao X M and Yin Y X 2009 IEEE Trans. Plasma Sci. 37 759 | [14] | Topala I and Nagatsu M 2015 Appl. Phys. Lett. 106 054105 | [15] | Buntat Z, Smith I R and Razali N A M 2009 J. Phys. D 42 235202 | [16] | Ono R, Yamashita Y, Takezawa K and Oda T 2005 J. Phys. D 38 2812 | [17] | Wang X X, Lu M Z and Pu Y K 2002 Acta Phys. Sin. 51 2781 (in Chinese) | [18] | Radmilović Radjenović M, Matejčik Š Klas M and Radjenović B 2013 J. Phys. D 46 015302 | [19] | Radmilović Radjenović M, Radjenović B, Matejčik Š and Klas M 2014 Plasma Chem. Plasma Process 34 55 | [20] | Go D B and Pohlman D A 2010 J. Appl. Phys. 107 103303 | [21] | Shiffler D A, Lacour M J, Sena M D and Mitchell M D 2000 IEEE Trans. Plasma Sci. 28 517 | [22] | Li Q and Liang E J 2005 Acta Phys. Sin. 54 5933 (in Chinese) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|