CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Local Structure Analysis of Lead Zinc Niobate-Barium Titanate Ceramic by X-Ray Absorption Spectroscopy and Density Functional Calculation |
Kanokwan Kanchiang1**, Phakkhananan Pakawanit2, Rattikorn Yimnirun3 |
1Program in Applied Physics, Faculty of Science, Maejo University, Chiang Mai 50290, Thailand 2Synchrotron Light Research Institute, Ratchasima 30000, Thailand 3School of Physics, Institute of Science, and NANOTEC-SUT Center of Excellence on Advanced Functional Nanomaterials, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
|
|
Cite this article: |
Kanokwan Kanchiang, Phakkhananan Pakawanit, Rattikorn Yimnirun 2017 Chin. Phys. Lett. 34 086102 |
|
|
Abstract The local structure of an alternative Pb(Zn$_{1/3}$Nb$_{2/3}$)O$_{3}$-based perovskite ceramic is investigated. The 0.07BaTiO$_{3}$-0.93Pb(Zn$_{1/3}$Nb$_{2/3}$)O$_{3}$ ceramic is synthesized using a combination of Zn$_{3}$Nb$_{2}$O$_{8}$ $B$-site precursor and BaTiO$_{3}$ perovskite phase stabilizer. Then, x-ray absorption spectroscopy and density functional theory are employed to calculate the local structure configuration and formation energy of the prepared samples. Ba$^{2+}$ is found to replace Pb$^{2+}$ in $A$-site with Zn$^{2+}$ occupying $B$-site in Pb(Zn$_{1/3}$Nb$_{2/3}$)O$_{3}$, while in the neighboring structure, Ti$^{4+}$ replaces Nb$^{5+}$ in $B$-site with Pb$^{2+}$ occupying $A$-site. With the substitution of BaTiO$_{3}$ in Pb(Zn$_{1/3}$Nb$_{2/3}$)O$_{3}$, the bond length between Zn$^{2+}$ and Pb$^{2+}$ is longer than that of the typical perovskite phase of Pb(Zn$_{1/3}$Nb$_{2/3}$)O$_{3}$. This indicates the key role of BaTiO$_{3}$ in decreasing the steric hindrance of Pb$^{2+}$ lone pair, and the mutual interactions between Pb$^{2+}$ lone pair and Zn$^{2+}$ and the formation energy is seen to decrease. This finding of the formation energy and local structure configuration relationship can further extend a fundamental understanding of the role of BaTiO$_{3}$ in stabilizing the perovskite phase in PbZn$_{13}$Nb$_{23}$O$_{3}$-based materials, which in turn will lead to an improved preparation technique for desired electrical properties.
|
|
Received: 23 February 2017
Published: 22 July 2017
|
|
PACS: |
61.05.cj
|
(X-ray absorption spectroscopy: EXAFS, NEXAFS, XANES, etc.)
|
|
61.43.Bn
|
(Structural modeling: serial-addition models, computer simulation)
|
|
61.50.Ah
|
(Theory of crystal structure, crystal symmetry; calculations and modeling)
|
|
|
Fund: Supported by the Thailand Research Fund under Grant No TRG5880097. |
|
|
[1] | Zeng X, Ding A L, Liu T, Deng G C and Zheng X S 2005 Phys. Status Solidi A 202 1842 | [2] | Srimathy B, Jayavel R, Ganesamoorthy S, Bhaumik I, Karnal A K, Natarajan V, Varadarajan E and Kumar J 2012 Cryst. Res. Technol. 47 523 | [3] | Shi L, Liao Q W, Zhang B P, Zhang J Y and Guo D 2014 Mater. Lett. 114 100 | [4] | Fujiu T, Tanaka A and Takenaka T 1991 Jpn. J. Appl. Phys. 30 L298 | [5] | Lee W S, Isobe T and Senna M 2002 Adv. Powder Technol. 13 43 | [6] | Ohwa H, Iwata M, Yasuda N and Ishibashi Y 1998 Jpn. J. Appl. Phys. 37 5410 | [7] | Tomeno I, Shimanuki S, Tsunoda Y and Ishii Y 2001 J. Phys. Soc. Phys. Jpn. 70 1444 | [8] | Kanchiang K, Pramchu S, Yimnirun R, Pakawanit P, Ananta S and Laosiritaworn Y 2013 J. Appl. Phys. 114 064103 | [9] | Matsuo Y, Sasaki H, Hayakawa S, Kanamaru F and Koizumi M 1969 J. Am. Ceram. Soc. 52 516 | [10] | Ravindranathan P, Srikanth V, Komarneni S and Bhalla A S 1996 Ferroelectrics 188 135 | [11] | Ahn B Y and Kim N K 2004 J. Am. Ceram. Soc. 83 1720 | [12] | Yun S and Wang X 2006 Mater. Chem. Phys. 98 62 | [13] | Furukawa O, Yamashita Y, Harata M, Takahashi T and Inagaki K 1985 Jpn. J. Appl. Phys. 24 96 | [14] | Halliyal A, Kumar U, Newnham R E and Cross L E 1987 Am. Ceram. Soc. Bull. 66 671 | [15] | Aksenov V L, Yu A, Purans J and Tyutyunnikov S I 2001 Phys. Part. Nuclei 32 1 | [16] | Pakawanit P, Ngamjarurojana A, Prasatkhetragarn A and Ananta S 2013 Ferroelectrics 454 84 | [17] | Weng T C, Waldo G S and Penner-Hahn J E 2005 J. Synchrotron Rad. 12 506 | [18] | Ravel B and Newville M 2005 Phys. Scr. 115 1007 | [19] | Ravel B and Newville M 2005 J. Synchrotron Rad. 12 537 | [20] | Kisi E H, Forrester J S and Knight K S 2006 Acta Crystallogr. C 62 i46 | [21] | Hua X, Chen X and Goddard W A 1997 Phys. Rev. B 55 16103 | [22] | Isobe M, Marumo F, Iwai S I and Kondo Y 1974 Bull. Tokyo Inst. Technol. 120 1 | [23] | Kato K and Tamura S 1975 Acta Crystallogr. B 31 673 | [24] | Hill R 1985 Acta Crystallogr. C 41 1281 | [25] | Kwei G H, Lawson A C, Billinge S J L and Cheong S W 1993 J. Phys. Chem. A 97 2368 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|