Chin. Phys. Lett.  2017, Vol. 34 Issue (7): 077401    DOI: 10.1088/0256-307X/34/7/077401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Revisiting the Electron-Doped SmFeAsO: Enhanced Superconductivity up to 58.6K by Th and F Codoping
Xiao-Chuan Wang1,3, Jia Yu1, Bin-Bin Ruan1, Bo-Jin Pan1, Qing-Ge Mu1, Tong Liu1, Kang Zhao1, Gen-Fu Chen1, Zhi-An Ren1,2,3*
1Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190
2Collaborative Innovation Center of Quantum Matter, Beijing 100190
3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Xiao-Chuan Wang, Jia Yu, Bin-Bin Ruan et al  2017 Chin. Phys. Lett. 34 077401
Download: PDF(1042KB)   PDF(mobile)(1026KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In the iron-based high-$T_{\rm c}$ bulk superconductors, $T_{\rm c}$ above 50 K was only observed in the electron-doped 1111-type compounds. Here we revisit the electron-doped SmFeAsO polycrystals to make a further investigation for the highest $T_{\rm c}$ in these materials. To introduce more electron carriers and less crystal lattice distortions, we study the Th and F codoping effects into the Sm-O layers with heavy electron doping. Dozens of Sm$_{1-x}$Th$_{x}$FeAsO$_{1-y}$F$_{y}$ samples are synthesized through the solid state reaction method, and these samples are carefully characterized by the structural, resistive, and magnetic measurements. We find that the codoping of Th and F clearly enhances the superconducting $T_{\rm c}$ more than the Th or F single-doped samples, with the highest record $T_{\rm c}$ up to 58.6 K when $x=0.2$ and $y=0.225$. Further element doping causes more impurities and lattice distortions in the samples with a weakened superconductivity.
Received: 15 March 2017      Published: 23 June 2017
PACS:  74.70.-b (Superconducting materials other than cuprates)  
  74.70.Xa (Pnictides and chalcogenides)  
  74.70.Dd (Ternary, quaternary, and multinary compounds)  
  74.72.Ek (Electron-doped)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11474339, the National Basic Research Program of China under Grant No 2016YFA0300301, and the Youth Innovation Promotion Association of the Chinese Academy of Sciences.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/7/077401       OR      https://cpl.iphy.ac.cn/Y2017/V34/I7/077401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiao-Chuan Wang
Jia Yu
Bin-Bin Ruan
Bo-Jin Pan
Qing-Ge Mu
Tong Liu
Kang Zhao
Gen-Fu Chen
Zhi-An Ren
[1]Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[2]Chen X H, Wu T, Wu G, Liu R H, Chen H and Fang D F 2008 Nature 453 761
[3]Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F and Zhao Z X 2008 Chin. Phys. Lett. 25 2215
[4]Jaroszynski J, Riggs S C, Hunte F, Gurevich A, Larbalestier D C and Boebinger G S 2008 Phys. Rev. B 78 064511
[5]Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006
[6]Wang X C, Liu Q Q, Lv Y X, Gao W B, Yang L X, Yu R C, Li F Y and Jin C Q 2008 Solid State Commun. 148 538
[7]Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C and Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262
[8]Ren Z A, Che G C, Dong X L, Yang J, Lu W, Yi W, Shen X L, Li Z C, Sun L L, Zhou F and Zhao Z X 2008 Europhys. Lett. 83 17002
[9]Wang C, Li L J, Chi S, Zhu Z W, Ren Z, Li Y K, Wang Y T, Lin X, Luo Y K, Jiang S, Xu X F, Cao G H and Xu Z A 2008 Europhys. Lett. 83 67006
[10]Fujioka M, Denholme S J, Ozaki T, Okazaki H, Deguchi K, Demura S, Hara H, Watanabe T, Takeya H, Yamaguchi T, Kumakura H and Takano Y 2013 Supercond. Sci. Technol. 26 085023
[11]Kyung W S, Huh S S, Koh Y Y, Choi K Y, Nakajima M, Eisaki H, Denlinger J D, Mo S K, Kim C and Kim Y K 2016 Nat. Mater. 15 1233
[12]Lv B, Deng L, Gooch M, Wei F, Sun Y, Meen J K, Xue Y Y, Lorenz B and Chu C W 2011 Proc. Natl. Acad. Sci. USA 108 15705
[13]Zhang S J, Wang X C, Liu Q Q, Lv Y X, Yu X H, Lin Z J, Zhao Y S, Wang L, Ding Y, Mao H K and Jin C Q 2009 Europhys. Lett. 88 47008
[14]Medvedev S, Mcqueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G and Felser C 2009 Nat. Mater. 8 630
[15]Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M and Chen X L 2010 Phys. Rev. B 82 180520
[16]Sun L L, Chen X J, Guo J, Gao P W, Huang Q Z, Wang H D, Fang M H, Chen X L, Chen G F, Wu Q, Zhang C, Gu D C, Dong X L, Wang L, Yang K, Li A G, Dai X, Mao H K and Zhao Z X 2012 Nature 483 67
[17]Ge J F, Liu Z L, Liu C H, Gao C L, Qian D, Xue Q K, Liu Y and Jia J F 2015 Nat. Mater. 14 285
[18]Ogino H, Matsumura Y, Katsura Y, Ushiyama K, Horii S, Kishio K and Shimoyama J 2009 Supercond. Sci. Technol. 22 075008
[19]Zhu X Y, Han F, Mu G, Cheng P, Shen B, Zeng B and Wen H H 2009 Phys. Rev. B 79 220512
[20]Shirage P M, Kihou K, Lee C H, Kito H, Eisaki H and Iyo A 2011 J. Am. Chem. Soc. 133 9630
[21]Kakiya S, Kudo K, Nishikubo Y, Oku K, Nishibori E, Sawa H, Yamamoto T, Nozaka T and Nohara M 2011 J. Phys. Soc. Jpn. 80 093704
[22]Katayama N, Kudo K, Onari S, Mizukami T, Sugawara K, Sugiyama Y, Kitahama Y, Iba K, Fujimura K, Nishimoto N, Nohara M and Sawa H 2013 J. Phys. Soc. Jpn. 82 123702
[23]Lu X F, Wang N Z, Zhang G H, Luo X G, Ma Z M, Lei B, Huang F Q and Chen X H 2014 Phys. Rev. B 89 020507
[24]Iyo A, Kawashima K, Kinjo T, Nishio T, Ishida S, Fujihisa H, Gotoh Y, Kihou K, Eisaki H and Yoshida Y 2016 J. Am. Chem. Soc. 138 3410
[25]Bernardini F, Garbarino G, Sulpice A, Regueiro M N, Gaudin E, Chevalier B and Cano A S 2017 arXiv:1701.05010
[26]Takahashi H, Igawa K, Arii K, Kamihara Y, Hirano M and Hosono H 2008 Nature 453 376
[27]Li Y K, Lin X, Tao Q, Chen H, Wang C, Li L J, Luo Y K, He M, Zhu Z W, Cao G H and Xu Z A 2009 Chin. Phys. Lett. 26 017402
[28]Zhigadlo N D, Katrych S, Weyeneth S, Puzniak R, Moll P J W, Bukowski Z, Karpinski J, Keller H and Batlogg B 2010 Phys. Rev. B 82 064517
[29]Hanna T, Muraba Y, Matsuishi S, Igawa N, Kodama K, Shamoto S and Hosono H 2011 Phys. Rev. B 84 024521
[30]Sefat A S, Huq A, McGuire M A, Jin R Y, Sales B C, Mandrus D, Cranswick L M D, Stephens P W and Stone K H 2008 Phys. Rev. B 78 104505
[31]Zocco D A, Hamlin J J, Baumbach R E, Maple M B, Mcguire M A, Sefat A S, Sales B C, Jin R, Mandrus D, Jeffries J R, Weir S T and Vohra Y K 2008 Physica C 468 2229
[32]Yi W, Sun L L, Ren Z A, Lu W, Dong X L, Zhang H J, Dai X, Fang Z, Li Z C, Che G C, Yang J, Shen X L, Zhou F and Zhao Z X 2008 Europhys. Lett. 83 57002
[33]Ueda S, Takeda S, Takano S, Yamamoto A and Naito M 2011 Appl. Phys. Lett. 99 232505
[34]Wang C L, Gao Z S, Wang L, Qi Y P, Wang D L, Yao C, Zhang Z Y and Ma Y W 2010 Supercond. Sci. Technol. 23 055002
[35]Singh S J, Shimoyama J, Yamamoto A, Ogino H and Kishio K 2013 IEEE Trans. Appl. Supercond. 23 7300605
Related articles from Frontiers Journals
[1] Xiaolei Yi, Xiangzhuo Xing, Yan Meng, Nan Zhou, Chunlei Wang, Yue Sun, and Zhixiang Shi. Anomalous Second Magnetization Peak in 12442-Type RbCa$_2$Fe$_4$As$_4$F$_2$ Superconductors[J]. Chin. Phys. Lett., 2023, 40(2): 077401
[2] Yayuan Qin, Yao Shen, Yiqing Hao, Hongliang Wo, Shoudong Shen, Russell A. Ewings, Yang Zhao, Leland W. Harriger, Jeffrey W. Lynn, and Jun Zhao. Erratum: Frustrated Magnetic Interactions and Quenched Spin Fluctuations in CrAs [Chin. Phys. Lett. 39, 127501 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 077401
[3] Yayuan Qin, Yao Shen, Yiqing Hao, Hongliang Wo, Shoudong Shen, Russell A. Ewings, Yang Zhao, Leland W. Harriger, Jeffrey W. Lynn, and Jun Zhao. Frustrated Magnetic Interactions and Quenched Spin Fluctuations in CrAs[J]. Chin. Phys. Lett., 2022, 39(12): 077401
[4] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors[J]. Chin. Phys. Lett., 2022, 39(9): 077401
[5] Shiwei Shen, Tian Qin, Jingjing Gao, Chenhaoping Wen, Jinghui Wang, Wei Wang, Jun Li, Xuan Luo, Wenjian Lu, Yuping Sun, and Shichao Yan. Coexistence of Quasi-two-dimensional Superconductivity and Tunable Kondo Lattice in a van der Waals Superconductor[J]. Chin. Phys. Lett., 2022, 39(7): 077401
[6] Shuo Li, Shuo Han, Shaohua Yan, Yi Cui, Le Wang, Shanmin Wang, Shanshan Chen, Hechang Lei, Feng Yuan, Jinshan Zhang, and Weiqiang Yu. Pressure-Induced Superconductivity in Flat-Band Kagome Compounds Pd$_3$P$_2$(S$_{1-x}$Se$_x$)$_8$[J]. Chin. Phys. Lett., 2022, 39(6): 077401
[7] Yu Dong, Yangyang Lv, Zuyu Xu, M. Abdel-Hafiez, A. N. Vasiliev, Haipeng Zhu, Junfeng Wang, Liang Li, Wanghao Tian, Wei Chen, Song Bao, Jinghui Wang, Yueshen Wu, Yulong Huang, Shiliang Li, Jie Yuan, Kui Jin, Labao Zhang, Huabing Wang, Shun-Li Yu, Jinsheng Wen, Jian-Xin Li, Jun Li, and Peiheng Wu. Observation of a Ubiquitous ($\pi, \pi$)-Type Nematic Superconducting Order in the Whole Superconducting Dome of Ultra-Thin BaFe$_{2-x}$Ni$_x$As$_2$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 077401
[8] Ziqin Yang, Shichun Huang, Yuan He, Xiangyang Lu, Hao Guo, Chunlong Li, Xiaofei Niu, Pingran Xiong, Yukun Song, Andong Wu, Bin Xie, Zhiming You, Qingwei Chu, Teng Tan, Feng Pan, Ming Lu, Didi Luo, Junhui Zhang, Shenghu Zhang, and Wenlong Zhan. Low-Temperature Baking Effect of the Radio-Frequency Nb$_{3}$Sn Thin Film Superconducting Cavity[J]. Chin. Phys. Lett., 2021, 38(9): 077401
[9] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 077401
[10] Yi Cui, Cong Li, Qing Li, Xiyu Zhu, Ze Hu, Yi-feng Yang, Jinshan Zhang, Rong Yu, Hai-Hu Wen, and Weiqiang Yu. NMR Evidence of Antiferromagnetic Spin Fluctuations in Nd$_{0.85}$Sr$_{0.15}$NiO$_2$[J]. Chin. Phys. Lett., 2021, 38(6): 077401
[11] Yongqing Cai, Tao Xie, Huan Yang, Dingsong Wu, Jianwei Huang, Wenshan Hong, Lu Cao, Chang Liu, Cong Li, Yu Xu, Qiang Gao, Taimin Miao, Guodong Liu, Shiliang Li, Li Huang, Huiqian Luo, Zuyan Xu, Hongjun Gao, Lin Zhao, and X. J. Zhou. Common ($\pi$,$\pi$) Band Folding and Surface Reconstruction in FeAs-Based Superconductors[J]. Chin. Phys. Lett., 2021, 38(5): 077401
[12] Fang Hong, Liuxiang Yang, Pengfei Shan, Pengtao Yang, Ziyi Liu, Jianping Sun, Yunyu Yin, Xiaohui Yu, Jinguang Cheng, and Zhongxian Zhao. Superconductivity of Lanthanum Superhydride Investigated Using the Standard Four-Probe Configuration under High Pressures[J]. Chin. Phys. Lett., 2020, 37(10): 077401
[13] Qiong Wu, Huaxue Zhou, Yanling Wu, Lili Hu, Shunli Ni, Yichao Tian, Fei Sun, Fang Zhou, Xiaoli Dong, Zhongxian Zhao, and Jimin Zhao. Ultrafast Quasiparticle Dynamics and Electron-Phonon Coupling in (Li$_{0.84}$Fe$_{0.16}$)OHFe$_{0.98}$Se[J]. Chin. Phys. Lett., 2020, 37(9): 077401
[14] Kang Zhao, Qing-Ge Mu, Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Tong Liu, Bo-Jin Pan, Shuai Zhang, Gen-Fu Chen, and Zhi-An Ren. A New Quasi-One-Dimensional Ternary Molybdenum Pnictide Rb$_{2}$Mo$_{3}$As$_{3}$ with Superconducting Transition at 10.5 K[J]. Chin. Phys. Lett., 2020, 37(9): 077401
[15] Shuai Zhang, Yiyan Wang, Chaoyang Ma, Wenliang Zhu, Zhian Ren, Lei Shan, and Genfu Chen. Superconductivity at the Normal Metal/Dirac Semimetal Cd$_3$As$_2$ Interface[J]. Chin. Phys. Lett., 2020, 37(7): 077401
Viewed
Full text


Abstract