Chin. Phys. Lett.  2017, Vol. 34 Issue (7): 077402    DOI: 10.1088/0256-307X/34/7/077402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
In Situ Electronic Structure Study of Epitaxial Niobium Thin Films by Angle-Resolved Photoemission Spectroscopy
Pai Xiang1, Ji-Shan Liu1,2,3**, Ming-Ying Li1, Hai-Feng Yang1, Zheng-Tai Liu1, Cong-Cong Fan1, Da-Wei Shen 1,2,3**, Zhen Wang1,2,3, Zhi Liu1,2,3,4
1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050
2CAS Center for Excellence in Superconducting Electronics, Shanghai 200050
3CAS-Shanghai Science Research Center, Shanghai 201203
4Division of Photon Science and Condensed Matter Physics, School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031
Cite this article:   
Pai Xiang, Ji-Shan Liu, Ming-Ying Li et al  2017 Chin. Phys. Lett. 34 077402
Download: PDF(1382KB)   PDF(mobile)(1378KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract High-quality single crystalline niobium films are grown on a-plane sapphire in molecular beam epitaxy. The film is single crystalline with a (110) orientation, and both the rocking curve and the reflection high-energy electron diffraction pattern demonstrate its high-quality with an atomically smooth surface. By in situ study of its electronic structure, a rather weak electron-electron correlation effect is demonstrated experimentally in this $4d$ transition metal. Moreover, a kink structure is observed in the electronic structure, which may result from electron-phonon interaction and it might contribute to the superconductivity. Our results help to understand the properties of niobium deeply.
Received: 13 March 2017      Published: 23 June 2017
PACS:  74.70.Xa (Pnictides and chalcogenides)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  79.60.-i (Photoemission and photoelectron spectra)  
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFA0300204, the National Natural Science Foundation of China under Grant Nos 11274332, 11574337, 11404360 and 11227902, the Natural Science Foundation of Shanghai under Grant No 14ZR1447600, the Strategic Priority Research Program (B) of the Chinese Academy of Sciences under Grant No XDB04040300, and the Youth Innovation Promotion Association CAS.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/7/077402       OR      https://cpl.iphy.ac.cn/Y2017/V34/I7/077402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Pai Xiang
Ji-Shan Liu
Ming-Ying Li
Hai-Feng Yang
Zheng-Tai Liu
Cong-Cong Fan
Da-Wei Shen
Zhen Wang
Zhi Liu
[1]Hawkins G and Clarke J 1976 J. Appl. Phys. 47 1616
[2]Fawcett E, Reed W A and Soden R R 1967 Phys. Rev. 159 533
[3]Burgemeister E A, Bosschieter J E and Dokoupil Z 1974 Phys. Lett. A 47 27
[4]Karim D P, Ketterson J B and Crabtree G W 1978 J. Low Temp. Phys. 30 389
[5]Mattheiss L F 1970 Phys. Rev. B 1 373
[6]Marksteiner P, Weinberger P, Neckel A et al 1986 Phys. Rev. B 33 6709
[7]Li Y, An B, Fukuyama S et al 2002 Mater. Characterization 48 163
[8]Singh D J and Nordstrom L 2006 Planewaves, Pseudopotentials and the LAPW Method (Berlin: Springer-Verlag) 2nd edn p 1C134
[9]Blaha P, Schwarz K, Madsen G, Kvasnicka D and Luitz J 2001 {in WIEN2K, An Augmented PlaneWave+Local Orbitals Program for Calculating Crystal Properties} (Austria: Technical Univievsity Wien)
[10]Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[11]Wildes A R, Mayer J and Theis-Br?hl K 2001 Thin Solid Films 401 7–34
[12]Ward R C C, Grier E J and Petford-Long A K 2003 J. Mater. Sci.: Mater. Electron. 14 533
[13]Li Y S, Zheng M, Mulcahy B et al 2011 Appl. Phys. Lett. 99 042507
[14]Jin Y R, Song X H and Zhang D L 2009 Sci. Chin. Ser. G: Phys. Mech. Astron. 52 1289
[15]Yoshii K, Yamamoto H, Saiki K et al 1995 Phys. Rev. B 52 13570
[16]Krishnan M, Valderrama E, Bures B et al 2011 Supercond. Sci. Technol. 24 115002
[17]Splett J D, Vecchia D F and Goodrich L F 2011 J. Res. Natl. Inst. Stand. Technol. 116 489
[18]Anderson J R, Mccaffrey J W and Schirber J E 1973 Phys. Rev. B 7 5115
[19]Chakraborty B, Pickett W E and Allen P B 1976 Phys. Rev. B 14 3227
[20]Miller J N, Lindau I, Stefan P M et al 1982 J. Appl. Phys. 53 3267
[21]Chainani A, Yokoya T, Kiss T et al 2000 Phys. Rev. Lett. 85 1966
[22]Liu M, Chang C Z, Zhang Z et al 2011 Phys. Rev. B 83 165440
[23]Rahn D J, Hellmann S, Kall?ne M et al 2012 Phys. Rev. B 85 224532
[24]Shai D E, Adamo C, Shen D W et al 2013 Phys. Rev. Lett. 110 087004
[25]Byczuk K, Kollar M, Held K et al 2007 Nat. Phys. 3 168
[26]Rotenberg E, Schaefer J and Kevan S D 2000 Phys. Rev. Lett. 84 2925
[27]Valla T, Fedorov A V, Johnson P D et al 1999 Phys. Rev. Lett. 83 2085
Related articles from Frontiers Journals
[1] Fazhi Yang, Giao Ngoc Phan, Renjie Zhang, Jin Zhao, Jiajun Li, Zouyouwei Lu, John Schneeloch, Ruidan Zhong, Mingwei Ma, Genda Gu, Xiaoli Dong, Tian Qian, and Hong Ding. Fe$_{1+y}$Te$_{x}$Se$_{1-x}$: A Delicate and Tunable Majorana Material[J]. Chin. Phys. Lett., 2023, 40(1): 077402
[2] B. L. Kang, M. Z. Shi, D. Zhao, S. J. Li, J. Li, L. X. Zheng, D. W. Song, L. P. Nie, T. Wu, and X. H. Chen. NMR Evidence for Universal Pseudogap Behavior in Quasi-Two-Dimensional FeSe-Based Superconductors[J]. Chin. Phys. Lett., 2022, 39(12): 077402
[3] Dong Li, Yue Liu, Zouyouwei Lu, Peiling Li, Yuhang Zhang, Sheng Ma, Jiali Liu, Jihu Lu, Hua Zhang, Guangtong Liu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Quasi-Two-Dimensional Nature of High-$T_{\rm c}$ Superconductivity in Iron-Based (Li,Fe)OHFeSe[J]. Chin. Phys. Lett., 2022, 39(12): 077402
[4] Yuanyuan Yang, Qisi Wang, Shaofeng Duan, Hongliang Wo, Chaozhi Huang, Shichong Wang, Lingxiao Gu, Dong Qian, Jun Zhao, and Wentao Zhang. Unusual Band Splitting and Superconducting Gap Evolution with Sulfur Substitution in FeSe[J]. Chin. Phys. Lett., 2022, 39(5): 077402
[5] Jia-Qi Guan, Li Wang, Pengdong Wang, Wei Ren, Shuai Lu, Rong Huang, Fangsen Li, Can-Li Song, Xu-Cun Ma, and Qi-Kun Xue. Honeycomb Lattice in Metal-Rich Chalcogenide Fe$_{2}$Te[J]. Chin. Phys. Lett., 2021, 38(11): 077402
[6] Shaobo Liu, Jie Yuan, Sheng Ma, Zouyouwei Lu, Yuhang Zhang, Mingwei Ma, Hua Zhang, Kui Jin, Li Yu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Magnetic-Field-Induced Spin Nematicity in FeSe$_{1-x}$S$_{x}$ and FeSe$_{1-y}$Te$_{y}$ Superconductor Systems[J]. Chin. Phys. Lett., 2021, 38(8): 077402
[7] Shuai Liu, Si-Min Nie, Yan-Peng Qi, Yan-Feng Guo, Hong-Tao Yuan, Le-Xian Yang, Yu-Lin Chen, Mei-Xiao Wang, and Zhong-Kai Liu. Measurement of Superconductivity and Edge States in Topological Superconductor Candidate TaSe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 077402
[8] Shaobo Liu, Sheng Ma, Zhaosheng Wang, Wei Hu, Zian Li, Qimei Liang, Hong Wang, Yuhang Zhang, Zouyouwei Lu, Jie Yuan, Kui Jin, Jian-Qi Li, Li Pi, Li Yu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Unusual Normal and Superconducting State Properties Observed in Hydrothermal Fe$_{1-\delta}$Se Flakes[J]. Chin. Phys. Lett., 2021, 38(5): 077402
[9] Mebrouka Boubeche, Jia Yu, Li Chushan, Wang Huichao, Lingyong Zeng, Yiyi He, Xiaopeng Wang, Wanzhen Su, Meng Wang, Dao-Xin Yao, Zhijun Wang, and Huixia Luo. Superconductivity and Charge Density Wave in Iodine-Doped CuIr$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2021, 38(3): 077402
[10] Cheng Zheng, Dapeng Zhao, Xinqiang Cai, Wantong Huang, Fanqi Meng, Qinghua Zhang, Lin Tang, Xiaopeng Hu, Lin Gu, Shuai-Hua Ji, Xi Chen. Zirconium Aided Epitaxial Growth of In$_{x}$Se$_{y}$ on InP(111) Substrates[J]. Chin. Phys. Lett., 2020, 37(8): 077402
[11] Shi-Hang Na, Wei Wu, and Jian-Lin Luo. Anisotropy Properties of Mn$_{2}$P Single Crystals with Antiferromagnetic Transition[J]. Chin. Phys. Lett., 2020, 37(8): 077402
[12] Yu-Ting Shao, Wen-Shan Hong, Shi-Liang Li, Zheng Li, Jian-Lin Luo. $^{19}$F NMR Study of the Bilayer Iron-Based Superconductor KCa$_{2}$Fe$_{4}$As$_{4}$F$_{2}$[J]. Chin. Phys. Lett., 2019, 36(12): 077402
[13] Hui-Can Mao, Bing-Feng Hu, Yuan-Hua Xia, Xi-Ping Chen, Cao Wang, Zhi-Cheng Wang, Guang-Han Cao, Shi-Liang Li, Hui-Qian Luo. Neutron Powder Diffraction Study on the Non-Superconducting Phases of ThFeAsN$_{1-x}$O$_x$ ($x=0.15, 0.6$) Iron Pnictide[J]. Chin. Phys. Lett., 2019, 36(10): 077402
[14] Hao Ru, Yi-Shi Lin, Yin-Cong Chen, Yang Feng, Yi-Hua Wang. Observation of Two-Level Critical State in the Superconducting FeTe Thin Films$^*$[J]. Chin. Phys. Lett., 2019, 36(7): 077402
[15] Yun Xie, Junsheng Feng, Hongjun Xiang, Xingao Gong. Interplay of Strain and Magnetism in FeSe Monolayers[J]. Chin. Phys. Lett., 2019, 36(5): 077402
Viewed
Full text


Abstract