CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
The Efficiency Droop of InGaN-Based Green LEDs with Different Superlattice Growth Temperatures on Si Substrates via Temperature-Dependent Electroluminescence |
Wei-Jing Qi, Long-Quan Xu**, Chun-Lan Mo, Xiao-Lan Wang, Jie Ding, Guang-Xu Wang, Shuan Pan, Jian-Li Zhang, Xiao-Ming Wu, Jun-Lin Liu, Feng-Yi Jiang |
National Institute of LED on Si Substrate, Nanchang University, Nanchang 330047
|
|
Cite this article: |
Wei-Jing Qi, Long-Quan Xu, Chun-Lan Mo et al 2017 Chin. Phys. Lett. 34 077301 |
|
|
Abstract InGaN-based green light-emitting diodes (LEDs) with different growth temperatures of superlattice grown on Si (111) substrates are investigated by temperature-dependent electroluminescence between 100 K and 350 K. It is observed that with the decrease of the growth temperature of the superlattice from 895$^{\circ}\!$C to 855$^{\circ}\!$C, the forward voltage decreases, especially at low temperature. We presume that this is due to the existence of the larger average size of V-shaped pits, which is determined by secondary ion mass spectrometer measurements. Meanwhile, the sample with higher growth temperature of superlattice shows a severer efficiency droop at cryogenic temperatures (about 100 K–150 K). Electron overflow into p-GaN is considered to be the cause of such phenomena, which is relevant to the poorer hole injection into multiple quantum wells and the more reduced effective active volume in the active region.
|
|
Received: 17 March 2017
Published: 23 June 2017
|
|
PACS: |
73.21.Cd
|
(Superlattices)
|
|
78.60.Fi
|
(Electroluminescence)
|
|
61.72.Ff
|
(Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.))
|
|
77.65.Ly
|
(Strain-induced piezoelectric fields)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 61334001, the National Key Research and Development Program of China under Grant Nos 2016YFB0400600, 2016YFB0400601 and 2016YFB0400100, the National Science Foundation for Young Scientists of China under Grant No 21405076, and the Fund for Less Developed Regions of the National Natural Science Foundation of China under Grant No 11364034. |
|
|
[1] | Tong J H, Zhao B J, Ren Z W, Wang X F, Chen X and Li S L 2013 Chin. Phys. Lett. 30 058503 | [2] | Wang L, Meng X, Song J H, Kim T S, Lim S Y, Hao Z B, Luo Y, Sun C Z, Han Y J, Xiong B, Wang J and Li H T 2017 Chin. Phys. Lett. 34 017301 | [3] | Chang S P, Wang C H, Chiu C H, Li J C, Lu Y S, Li Z Y, Yang H C, Kuo H C, Lu T C and Wang S C 2010 Appl. Phys. Lett. 97 251114 | [4] | Kudryk Y Y, Tkachenko A K and Zinovchuk A V 2012 Semicond. Sci. Technol. 27 055013 | [5] | Hammersley S, Badcock T J, Watson-Parris D, Godfrey M J, Dawson P, Kappers M J and Humphreys C J 2011 Phys. Status Solidi C 8 2194 | [6] | Shin D S, Han D P, Oh J Y and Shim J I 2012 Appl. Phys. Lett. 100 153506 | [7] | Mo C L, Fang W Q, Pu Y, Liu H C and Jiang F Y 2005 J. Cryst. Growth 285 312 | [8] | Liu J L, Feng F F, Zhou Y H, Zhang J L and Jiang F Y 2011 Appl. Phys. Lett. 99 111112 | [9] | Götz W, Johnson N M, Walker J, Bour D P and Street R A 1996 Appl. Phys. Lett. 68 667 | [10] | Quan Z J, Liu J L, Fang F, Wang G X and Jiang F Y 2015 J. Appl. Phys. 118 193102 | [11] | Han D P, Zheng D G, Oh C H, Kim H, Shim J I, Shin D S and Kim K S 2014 Appl. Phys. Lett. 104 151108 | [12] | Lee C M, Chuo C C, Dai J F, Zheng X F and Chyi J I 2001 J. Appl. Phys. 89 6554 | [13] | Wu X M, Liu J L, Quan Z J, Xiong C B, Zheng C D, Zhang J L, Mao Q H and Jiang F Y 2014 Appl. Phys. Lett. 104 221101 | [14] | Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J and Park Y 2007 Appl. Phys. Lett. 91 183507 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|