Chin. Phys. Lett.  2016, Vol. 33 Issue (02): 026104    DOI: 10.1088/0256-307X/33/2/026104
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
The Stable or Metastable Phases in Compressed Zn-O Systems
Guang-Lin Sun, Hong-Mei Huang**, Yan-Ling Li
School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116
Cite this article:   
Guang-Lin Sun, Hong-Mei Huang, Yan-Ling Li 2016 Chin. Phys. Lett. 33 026104
Download: PDF(1276KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Variable-composition evolutionary structure searches are used to explore stable stoichiometries for the Zn-O system below 300 GPa. Our results confirm the previous structural phase transition sequence of pressurised ZnO. ZnO is thermodynamically stable up to 300 GPa and zinc peroxide (ZnO$_{2}$, space group $Pa\bar{3}$) is metastable under lower pressure. Insulating $I4/mcm$-ZnO$_{2}$ is thermodynamically stable between 128.3–300 GPa. Insulated metastable $P3_{1}21$-ZnO$_{2}$, controlling the pressure range of 51.5–128.3 GPa, has a wide band gap compared to the $Pa\bar{3}$-ZnO$_{2}$ and $I4/mcm$-ZnO$_{2}$. Phonon and elastic constant calculations conclude the dynamical and mechanical stability for the explored thermodynamically stable or metastable structures.
Received: 23 September 2015      Published: 26 February 2016
PACS:  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  62.50.-p (High-pressure effects in solids and liquids)  
  62.20.de (Elastic moduli)  
  63.20.D- (Phonon states and bands, normal modes, and phonon dispersion)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/2/026104       OR      https://cpl.iphy.ac.cn/Y2016/V33/I02/026104
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Guang-Lin Sun
Hong-Mei Huang
Yan-Ling Li
[1] Nanto H et al 1994 J. Mater. Sci. 29 6529
[2] Hosseini Sarvari M and Sharghi H 2005 Tetrahedron 61 10903
[3] Stolt L et al 1993 Appl. Phys. Lett. 62 597
[4] Ikeda T et al 1994 Sol. Energy Mater. Sol. Cells 34 379
[5] Kim H et al 2000 Appl. Phys. Lett. 76 259
[6] Müller J and Wei?enrieder S 1994 Fresenius' J. Anal. Chem. 349 380
[7] Bates C H et al 1962 Science 137 993
[8] Desgreniers S 1998 Phys. Rev. B 58 14102
[9] Liu H Z et al 2006 J. Appl. Phys. 100 093509
[10] Liu M et al 2013 Phys. Rev. B 87 085306
[11] Jaffe J E and Hess A C 1993 Phys. Rev. B 48 7903
[12] Amrani B et al 2006 Solid State Commun. 137 395
[13] Jaffe J E et al 2000 Phys. Rev. B 62 1660
[14] Kuang F G et al 2014 Mater. Sci. Semicond. Process. 23 63
[15] Pu C Y et al 2011 Solid State Commun. 151 1533
[16] Zagorac D et al 2014 Phys. Rev. B 89 075201
[17] Ashrafi A B M A et al 2000 Appl. Phys. Lett. 76 550
[18] Bragg W L and Darbyshire J A 1932 Trans. Faraday Soc. 28 522
[19] Decremps F et al 2003 Phys. Rev. B 68 104101
[20] Karzel H et al 1996 Phys. Rev. B 53 11425
[21] Li Z W et al 2009 Phys. Rev. B 79 193201
[22] Zhang W et al 2013 Science 342 1502
[23] Li Y L et al 2015 Nat. Commun. 6 6974
[24] Zhu Q et al 2013 Phys. Chem. Chem. Phys. 15 7696
[25] Bai H X and Liu X H 2010 Mater. Lett. 64 341
[26] Liu S Z et al 2012 Mater. Lett. 71 154
[27] Escobedo-Morales A et al 2015 Mater. Chem. Phys. 151 282
[28] Bouibes A and Zaoui A 2015 Solid State Commun. 220 36
[29] Lyakhov A O et al 2013 Comput. Phys. Commun. 184 1172
[30] Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704
[31] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[32] Perdew J P et al 1996 Phys. Rev. Lett. 77 3865
[33] Bl?chl P E 1994 Phys. Rev. B 50 17953
[34] Togo A et al 2008 Phys. Rev. B 78 134106
[35] Maouche D et al 2007 Mater. Chem. Phys. 106 11
[36] Cui S X et al 2009 J. Alloys Compd. 476 306
[37] Puselj M et al 1985 Croat. Chem. Acta 58 283
[38] Chen W et al 2009 J. Phys. Chem. C 113 1320
[39] Li Y L et al 2013 Proc. Natl. Acad. Sci. USA 110 9289
[40] Li Y L et al 2013 Sci. Rep. 3 3331
[41] Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104
Related articles from Frontiers Journals
[1] Lulu Liu, Shoutao Zhang, and Haijun Zhang. Pressure-Driven Ne-Bearing Polynitrides with Ultrahigh Energy Density[J]. Chin. Phys. Lett., 2022, 39(5): 026104
[2] Yufeng Li, Shichuan Sun, Yu He, and Heping Li. First-Principles Calculations about Elastic and Li$^{+}$ Transport Properties of Lithium Superoxides under High Pressure and High Temperature[J]. Chin. Phys. Lett., 2022, 39(2): 026104
[3] Yun-Xian Liu , Chao Wang, Shuai Han , Xin Chen , Hai-Rui Sun , and Xiao-Bing Liu. Novel Superconducting Electrides in Ca–S System under High Pressures[J]. Chin. Phys. Lett., 2021, 38(3): 026104
[4] Qunfei Zheng, Qiang Li, Saidong Xue, Yanhui Wu, Lijuan Wang, Qian Zhang, Xiaomei Qin, Xiangyong Zhao, Feifei Wang, and Wenge Yang. Pressure Driven Structural Evolutions of 0.935(Na$_{0.5}$Bi$_{0.5}$)TiO$_{3}$-0.065BaTiO$_{3}$ Lead-Free Ferroelectric Single Crystal through Raman Spectroscopy[J]. Chin. Phys. Lett., 2021, 38(2): 026104
[5] Qingqi Zeng, Jianlei Shen, Enke Liu, Xuekui Xi, Wenhong Wang, Guangheng Wu, and Xixiang Zhang. Large Barocaloric Effect with High Pressure-Driving Efficiency in a Hexagonal MnNi$_{0.77}$Fe$_{0.23}$Ge Alloy[J]. Chin. Phys. Lett., 2020, 37(7): 026104
[6] Jingyan Song, Shuai Duan, Xin Chen, Xiangjun Li , Bingchao Yang , and Xiaobing Liu. Synthesis of Highly Stable One-Dimensional Black Phosphorus/h-BN Heterostructures: A Novel Flexible Electronic Platform[J]. Chin. Phys. Lett., 2020, 37(7): 026104
[7] Li Lei, Qi-Qi Tang, Feng Zhang, Shan Liu, Bin-Bin Wu, Chun-Yin Zhou. Evidence for a New Extended Solid of Nitrogen[J]. Chin. Phys. Lett., 2020, 37(6): 026104
[8] Li Lei, Qi-Qi Tang, Feng Zhang, Shan Liu, Bin-Bin Wu, Chun-Yin Zhou. Evidence for a New Extended Solid of Nitrogen *[J]. Chin. Phys. Lett., 0, (): 026104
[9] Gang-Ling Hao, Yu-Chuan Li, Xing-Fu Wang, Wei-Guo Wang, Xin-Fu Wang, Dan Wang, Xian-Yu Li. Fe–Al Phase Formation Studied by Internal Friction during Heating Process[J]. Chin. Phys. Lett., 2020, 37(3): 026104
[10] Chao Wang, Yun-Xian Liu, Xin Chen, Pin Lv, Hai-Rui Sun, Xiao-Bing Liu. Stable Compositions, Structures and Electronic Properties in K–Ga Systems Under Pressure[J]. Chin. Phys. Lett., 2020, 37(2): 026104
[11] Shu-Qing Jiang, Xue Yang, Xiao-Li Huang, Yan-Ping Huang, Xin Li, Tian Cui. The Unexpected Stability of Hydrazine Molecules in Hydrous Environment under Pressure[J]. Chin. Phys. Lett., 2020, 37(1): 026104
[12] Can Tian, Xiao-li Huang, Yan-ping Huang, Xin Li, Di Zhou, Xin Wang, Tian Cui. High-Pressure Behavior of Nano-Pt in Hydrogen Environment[J]. Chin. Phys. Lett., 2019, 36(10): 026104
[13] Shu-Peng Lyu, Jia Wang, Guo-Zhao Zhang, Yu-Fei Wang, Min Wang, Cai-Long Liu, Chun-Xiao Gao, Yong-Hao Han. Pressure-Induced Ionic-Electronic Transition in BiVO$_{4}$[J]. Chin. Phys. Lett., 2019, 36(7): 026104
[14] Sheng Jiang, Jing Liu, Xiao-Dong Li, Yan-Chun Li, Shang-Ming He, Ji-Chao Zhang. High-Pressure Phase Transitions of Cubic Y$_{2}$O$_{3}$ under High Pressures by In-situ Synchrotron X-Ray Diffraction[J]. Chin. Phys. Lett., 2019, 36(4): 026104
[15] Yun-Peng Gao, Wan-Qing Dong, Gong Li, Ri-Ping Liu. Influence of Pressure on the Annealing Process of $\beta$-Ca$_{2}$SiO$_{4}$(C$_{2}$S) in Portland Cement[J]. Chin. Phys. Lett., 2018, 35(3): 026104
Viewed
Full text


Abstract