Chin. Phys. Lett.  2016, Vol. 33 Issue (02): 026105    DOI: 10.1088/0256-307X/33/2/026105
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Generation of Nitrogen-Vacancy Center Pairs in Bulk Diamond by Molecular Nitrogen Implantation
Zhao-Jun Gong, Xiang-Dong Chen**, Cong-Cong Li, Shen Li, Bo-Wen Zhao, Fang-Wen Sun
1Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026
2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
Zhao-Jun Gong, Xiang-Dong Chen, Cong-Cong Li et al  2016 Chin. Phys. Lett. 33 026105
Download: PDF(696KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The coupled negatively charged nitrogen-vacancy (NV$^{-}$) center system is a promising candidate for scalable quantum information techniques. In this work, ionized nitrogen molecules are implanted into bulk diamond to generate coupled NV$^{-}$ center pairs. The two-photon autocorrelation measurement and optically detected magnetic resonance measurement are carried out to confirm the production of the NV$^{-}$ center pair. Also, both 1.3 μs decoherence time and 4.9 kHz magnetic coupling strength of the NV$^{-}$ center pair are measured by controlling and detecting the spin states. Along with nanoscale manipulation and detection methods, such coupled NV$^{-}$ centers through short distance dipole–dipole interaction would show high potential in scalable quantum information processes.
Received: 16 November 2015      Published: 26 February 2016
PACS:  61.72.-y (Defects and impurities in crystals; microstructure)  
  71.55.-i (Impurity and defect levels)  
  78.56.-a (Photoconduction and photovoltaic effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/2/026105       OR      https://cpl.iphy.ac.cn/Y2016/V33/I02/026105
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhao-Jun Gong
Xiang-Dong Chen
Cong-Cong Li
Shen Li
Bo-Wen Zhao
Fang-Wen Sun
[1] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O'Brien J L 2010 Nature 464 45
[2] Santori C et al 2006 Opt. Express 14 7986
[3] Manson N B, He X F and Fisk P T 1990 Opt. Lett. 15 1094
[4] Meijer J, Burchard B, Domhan M et al 2005 Appl. Phys. Lett. 87 261909
[5] Jelezko F, Gaebel T, Popa I, Domhan M, Gruber A and Wrachtrup J 2004 Phys. Rev. Lett. 93 130501
[6] Jelezko F and Wrachtrup J 2006 Phys. Status Solidii A: Appl. Mater. Sci. 203 3207
[7] Hausmann B J et al 2012 Nano Lett. 12 1578
[8] Pan X Y, Liu G Q, Yang L L and Fan H 2011 Appl. Phys. Lett. 99 051113
[9] Togan E et al 2010 Nature 466 730
[10] Balasubramanian G et al 2008 Nature 455 648
[11] Degen C 2008 Appl. Phys. Lett. 92 243111
[12] Maze J et al 2008 Nature 455 644
[13] Chen X D et al 2013 Europhys. Lett. 101 67003
[14] Chang Y R et al 2008 Nat. Nanotechnol. 3 284
[15] McGuinness L P et al 2011 Nat. Nanotechnol. 6 358
[16] Bernien H et al 2013 Nature 497 86
[17] Pfaff W et al 2014 Science 345 532
[18] Hensen B et al 2015 Nature 526 682
[19] Saito S et al 2013 Phys. Rev. Lett. 111 107008
[20] Tanaka T, Knott P, Matsuzaki Y, Dooley S, Yamaguchi H, Munro W J and Saito S 2015 Phys. Rev. Lett. 115 170801
[21] Zhu X et al 2011 Nature 478 221
[22] Neumann P et al 2010 Nat. Phys. 6 249
[23] Dolde F et al 2013 Nat. Phys. 9 139
[24] Cui J M et al 2013 Phys. Rev. Lett. 110 153901
[25] Chen X D, Zou C L, Gong Z J, Dong C H, Guo G C and Sun F W 2015 Light: Sci. Appl. 4 e230
[26] Cui J M et al 2012 Chin. Phys. Lett. 29 036103
[27] Wang X M et al 2011 Chin. Phys. Lett. 28 016102
[28] Zhou L M, Dong Y and Sun F W 2015 Chin. Phys. Lett. 32 067601
[29] James F Z and Jochen P B 2008 Treatise on Heavy-Ion Science (New York: Springer) p 93
[30] Manson N B, Harrison J P and Sellars M J 2006 Phys. Rev. B 74 104303
[31] Yamamoto T et al 2013 Phys. Rev. B 88 201201
[32] Yamamoto T et al 2013 Phys. Rev. B 88 075206
[33] Chu Y et al 2014 Nano Lett. 14 1982
Related articles from Frontiers Journals
[1] Ziwen Chen, Yulong Li, Rui Zhu, Jun Xu, Tiequan Xu, Dali Yin, Xinwei Cai, Yue Wang, Jianming Lu, Yan Zhang, and Ping Ma. High-Temperature Superconducting YBa$_{2}$Cu$_{3}$O$_{7-\delta}$ Josephson Junction Fabricated with a Focused Helium Ion Beam[J]. Chin. Phys. Lett., 2022, 39(7): 026105
[2] Xiaowei Wu, Chen Ming, Jing Shi, Han Wang, Damien West, Shengbai Zhang, and Yi-Yang Sun. Defects in Statically Unstable Solids: The Case for Cubic Perovskite $\alpha$-CsPbI$_3$[J]. Chin. Phys. Lett., 2022, 39(4): 026105
[3] Xiaoyan Sun, Huaguang Wang, Hao Feng, Zexin Zhang, and Yuqiang Ma. Observation of the Pinning-Induced Crystal-Hexatic-Glass Transition in Two-Dimensional Colloidal Suspensions[J]. Chin. Phys. Lett., 2021, 38(10): 026105
[4] Chen Qiu, Ruyue Cao, Cai-Xin Zhang, Chen Zhang, Dan Guo, Tao Shen, Zhu-You Liu, Yu-Ying Hu, Fei Wang, and Hui-Xiong Deng. First-Principles Study of Intrinsic Point Defects of Monolayer GeS[J]. Chin. Phys. Lett., 2021, 38(2): 026105
[5] Yequan Chen, Ruxin Liu, Yongda Chen, Xiao Yuan, Jiai Ning, Chunchen Zhang, Liming Chen, Peng Wang, Liang He, Rong Zhang, Yongbing Xu, and Xuefeng Wang. Large-Area Freestanding Weyl Semimetal WTe$_{2}$ Membranes[J]. Chin. Phys. Lett., 2021, 38(1): 026105
[6] Xiao-Yu Zhao, Jun-Hui Huang, Zhi-Yao Zhuo, Yong-Zhou Xue, Kun Ding, Xiu-Ming Dou, Jian Liu, Bao-Quan Sun. Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure[J]. Chin. Phys. Lett., 2020, 37(4): 026105
[7] Yan-Bin Sheng, Hong-Peng Zhang, Tie-Long Shen, Kong-Fang Wei, Long Kang, Rui Liu, Tong-Min Zhang, Bing-Sheng Li. Atomic Mixing Induced by Ion Irradiation of V/Cu Multilayers[J]. Chin. Phys. Lett., 2020, 37(3): 026105
[8] Yi Wang, Wensheng Lai, Jiahao Li. An Incremental Model for Defect Production upon Cascade Overlapping[J]. Chin. Phys. Lett., 2020, 37(1): 026105
[9] Hong-Yu Yu, Nan Gao, Hong-Dong Li, Xu-Ri Huang, Tian Cui. Comparative Study of Substitutional N and Substitutional P in Diamond[J]. Chin. Phys. Lett., 2019, 36(11): 026105
[10] Baoan Liu, Suye Yu, Xiangcao Li, Xin Ju. Electronic Structure and Optical Property Calculation of an Oxygen Vacancy in NH$_{4}$H$_{2}$PO$_{4}$ Crystals[J]. Chin. Phys. Lett., 2019, 36(3): 026105
[11] Li Guan, Guang-Ming Shen, Hao-Tian Ma, Guo-Qi Jia, Feng-Xue Tan, Ya-Nan Liang, Zhi-Ren Wei. Different Thermal Stabilities of Cation Point Defects in LaAlO$_{3}$ Bulk and Films[J]. Chin. Phys. Lett., 2018, 35(9): 026105
[12] Ying-Xi Niu, Xiao-Yan Tang, Ren-Xu Jia, Ling Sang, Ji-Chao Hu, Fei Yang, Jun-Min Wu, Yan Pan, Yu-Ming Zhang. Influence of Triangle Structure Defect on the Carrier Lifetime of the 4H-SiC Ultra-Thick Epilayer[J]. Chin. Phys. Lett., 2018, 35(7): 026105
[13] Shen Li, Cui-Hong Li, Bo-Wen Zhao, Yang Dong, Cong-Cong Li, Xiang-Dong Chen, Ya-Song Ge, Fang-Wen Sun. A Bright Single-Photon Source from Nitrogen-Vacancy Centers in Diamond Nanowires[J]. Chin. Phys. Lett., 2017, 34(9): 026105
[14] Xiao-Meng Zhao, Yang Zhang, Li-Jie Cui, Min Guan, Bao-Qiang Wang, Zhan-Ping Zhu, Yi-Ping Zeng. Growth and Characterization of InSb Thin Films on GaAs (001) without Any Buffer Layers by MBE[J]. Chin. Phys. Lett., 2017, 34(7): 026105
[15] Yan-Xia Ye, Xiu-Ming Dou, Kun Ding, Fu-Hua Yang, De-Sheng Jiang, Bao-Quan Sun. Fluorescence Intermittency in Monolayer WSe$_{2}$[J]. Chin. Phys. Lett., 2017, 34(7): 026105
Viewed
Full text


Abstract