CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Generation of Nitrogen-Vacancy Center Pairs in Bulk Diamond by Molecular Nitrogen Implantation |
Zhao-Jun Gong, Xiang-Dong Chen**, Cong-Cong Li, Shen Li, Bo-Wen Zhao, Fang-Wen Sun |
1Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026 2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
|
|
Cite this article: |
Zhao-Jun Gong, Xiang-Dong Chen, Cong-Cong Li et al 2016 Chin. Phys. Lett. 33 026105 |
|
|
Abstract The coupled negatively charged nitrogen-vacancy (NV$^{-}$) center system is a promising candidate for scalable quantum information techniques. In this work, ionized nitrogen molecules are implanted into bulk diamond to generate coupled NV$^{-}$ center pairs. The two-photon autocorrelation measurement and optically detected magnetic resonance measurement are carried out to confirm the production of the NV$^{-}$ center pair. Also, both 1.3 μs decoherence time and 4.9 kHz magnetic coupling strength of the NV$^{-}$ center pair are measured by controlling and detecting the spin states. Along with nanoscale manipulation and detection methods, such coupled NV$^{-}$ centers through short distance dipole–dipole interaction would show high potential in scalable quantum information processes.
|
|
Received: 16 November 2015
Published: 26 February 2016
|
|
PACS: |
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
71.55.-i
|
(Impurity and defect levels)
|
|
78.56.-a
|
(Photoconduction and photovoltaic effects)
|
|
|
|
|
[1] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O'Brien J L 2010 Nature 464 45 [2] Santori C et al 2006 Opt. Express 14 7986 [3] Manson N B, He X F and Fisk P T 1990 Opt. Lett. 15 1094 [4] Meijer J, Burchard B, Domhan M et al 2005 Appl. Phys. Lett. 87 261909 [5] Jelezko F, Gaebel T, Popa I, Domhan M, Gruber A and Wrachtrup J 2004 Phys. Rev. Lett. 93 130501 [6] Jelezko F and Wrachtrup J 2006 Phys. Status Solidii A: Appl. Mater. Sci. 203 3207 [7] Hausmann B J et al 2012 Nano Lett. 12 1578 [8] Pan X Y, Liu G Q, Yang L L and Fan H 2011 Appl. Phys. Lett. 99 051113 [9] Togan E et al 2010 Nature 466 730 [10] Balasubramanian G et al 2008 Nature 455 648 [11] Degen C 2008 Appl. Phys. Lett. 92 243111 [12] Maze J et al 2008 Nature 455 644 [13] Chen X D et al 2013 Europhys. Lett. 101 67003 [14] Chang Y R et al 2008 Nat. Nanotechnol. 3 284 [15] McGuinness L P et al 2011 Nat. Nanotechnol. 6 358 [16] Bernien H et al 2013 Nature 497 86 [17] Pfaff W et al 2014 Science 345 532 [18] Hensen B et al 2015 Nature 526 682 [19] Saito S et al 2013 Phys. Rev. Lett. 111 107008 [20] Tanaka T, Knott P, Matsuzaki Y, Dooley S, Yamaguchi H, Munro W J and Saito S 2015 Phys. Rev. Lett. 115 170801 [21] Zhu X et al 2011 Nature 478 221 [22] Neumann P et al 2010 Nat. Phys. 6 249 [23] Dolde F et al 2013 Nat. Phys. 9 139 [24] Cui J M et al 2013 Phys. Rev. Lett. 110 153901 [25] Chen X D, Zou C L, Gong Z J, Dong C H, Guo G C and Sun F W 2015 Light: Sci. Appl. 4 e230 [26] Cui J M et al 2012 Chin. Phys. Lett. 29 036103 [27] Wang X M et al 2011 Chin. Phys. Lett. 28 016102 [28] Zhou L M, Dong Y and Sun F W 2015 Chin. Phys. Lett. 32 067601 [29] James F Z and Jochen P B 2008 Treatise on Heavy-Ion Science (New York: Springer) p 93 [30] Manson N B, Harrison J P and Sellars M J 2006 Phys. Rev. B 74 104303 [31] Yamamoto T et al 2013 Phys. Rev. B 88 201201 [32] Yamamoto T et al 2013 Phys. Rev. B 88 075206 [33] Chu Y et al 2014 Nano Lett. 14 1982 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|