CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Supersaturating Silicon with Titanium by Continuous-Wave Laser Irradiation of Sputtered Titanium Film on Silicon |
Bao-Dian Fan1, Yu Qiu2, Rong Chen1, Miao Pan3, Li-Han Cai1, Jiang-Hui Zheng1, Chao Chen1,4** |
1College of Energy, Xiamen University, Xiamen 361005 2Institute of Advanced Photovoltaics, Fujian Jiangxia University, Fuzhou 350108 3Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 4School of Physics and Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005
|
|
Cite this article: |
Bao-Dian Fan, Yu Qiu, Rong Chen et al 2016 Chin. Phys. Lett. 33 026103 |
|
|
Abstract A method of magnetron sputtering followed by continuous-wave (cw) laser irradiation is developed to prepare crystalline silicon supersaturated with titanium. The irradiation of single crystalline Si samples sputtered with a thin layer of Ti is carried out under the 1064 nm cw laser in a specially designed home-made facility. The thickness of the Si layer, within which the concentration of Ti surpasses the Mott limit, reaches 365 nm and the maximum concentration of Ti reaches $1.83\times10^{21}$ cm$^{-3}$. The crystalline structure of the Si samples is kept unchanged after cw laser irradiation. These results show that the current method can be an efficient way to obtain an intermediate band semiconductor material for solar cells.
|
|
Received: 30 September 2015
Published: 26 February 2016
|
|
PACS: |
61.82.Fk
|
(Semiconductors)
|
|
61.72.Bb
|
(Theories and models of crystal defects)
|
|
82.80.Ms
|
(Mass spectrometry (including SIMS, multiphoton ionization and resonance ionization mass spectrometry, MALDI))
|
|
|
|
|
[1] Wu X, Zhang D, Cai H, Zhou Y, Ni J and Zhang J 2015 Acta Phys. Sin. 64 096102 (in Chinese) [2] Liu Y H, Wang R, Cui X Y and Wang Y X 2009 Chin. Phys. Lett. 26 026102 [3] Luque A and Martí A 1997 Phys. Rev. Lett. 78 5014 [4] Zhao Y, Xiong S and Zhang X 2010 Physics 39 314 (in Chinese) [5] Zhao J and Zeng Y 2011 Physics 40 233 (in Chinese) [6] Ai B, Shen H, Ban Q et al 2005 J. Cryst. Growth 276 83 [7] Silvestre S, Boronat A, Colina M, Casta?er L et al 2013 Jpn. J. Appl. Phys. 52 122302 [8] Olea J, Toledano-Luque M, Pastor D et al 2008 J. Appl. Phys. 104 016105 [9] Luque A, Martí A, Antolín E and Tablero C 2006 Physica B 382 320 [10] Antolín E, Martí A, Olea J, Pastor D et al 2009 Appl. Phys. Lett. 94 042115 [11] Hocine S and Mathiot D 1988 Appl. Phys. Lett. 53 1269 [12] Olea J, del Prado A, Pastor D, Maírtil I and Gonzaílez-Diíaz G 2011 J. Appl. Phys. 109 113541 [13] Zhou Y R, Liu F Z, Zhu M F, Song X H and Zhang P 2013 Appl. Phys. Lett. 102 222106 [14] Kern W 1990 J. Electrochem. Soc. 137 1887 [15] Tan S Y, Zhai T, Zhang R K, Lu D, Wang W and Ji C 2015 Chin. Phys. B 24 064211 [16] Kittl J A, Aziz M J, Brunco D P and Thompson M O 1995 J. Cryst. Growth 148 172 [17] Morita K and Miki T 2003 Intermetallics 11 1111 [18] Fan B D, Chen R, Pang A S and Chen C 2015 Mater. Sci. Forum 833 117 [19] Zhou Z, H U Y, Shan X and Lu X 2014 Chin. Phys. Lett. 31 116801 [20] Cheng Q J, Xu S Y and Ostrikov K 2009 J. Mater. Chem. 19 5134 [21] Yang Q, Wang S, Lu J, Xiong G, Feng Z, Xin Q and Li C 2000 Appl. Catal. A 194 507 [22] Porto S P S, Fleury P A and Damen T C 1967 Phys. Rev. 154 522 [23] Jeon H, Sukow C A, Hongycutt J W, Rozgonyi G A and Nemanich R J 1992 J. Appl. Phys. 71 4269 [24] Sze S M 1981 Physics of Semiconductor Devices (New York: Wiley) [25] Pastor D, Olea J, del Prado A,. Garciía-Hemme E, Maírtil I, Gonzaílez-Diíaz G, Ibaí?ez J, Cuscó R and Artús L 2011 Semicond. Sci. Technol. 26 115003 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|