Chin. Phys. Lett.  2015, Vol. 32 Issue (4): 047305    DOI: 10.1088/0256-307X/32/4/047305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Influence of Temperature on the Conductivity of Multi-walled Carbon Nanotube Interconnects
LU Qi-Jun, ZHU Zhang-Ming**, YANG Yin-Tang, DING Rui-Xue
School of Microelectronics, Xidian University, Xi'an 710071
Cite this article:   
LU Qi-Jun, ZHU Zhang-Ming, YANG Yin-Tang et al  2015 Chin. Phys. Lett. 32 047305
Download: PDF(574KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a new conductivity model of multi-walled carbon nanotube (MWCNT) interconnects considering the influence of temperature. For each shell of MWCNT interconnects, it may present the property of ballistic transport or may suffer from acoustic photo and optical phonon (OP) scattering depending on their mean free paths (MFPs) and the wire length. Furthermore, since the MFPs are proportional to the shell diameter, five regions exist in the wire length in which the factors influencing the conductivity are determined. Thus the conductivity is modeled in five cases according to their lengths, and the final obtained model is a 5-piecewise function. By using this model, the influence of temperature on the conductivity is examined and analyzed. It is shown that the conductivity demonstrates different, changing behaviors with the increase of temperature in the five cases. Additionally, the influence of OP scattering on the conductivity does not need to be taken into account at room temperatures, whereas this influence will produce a decline region in the conductivity at high temperatures.
Received: 08 December 2014      Published: 30 April 2015
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  81.07.De (Nanotubes)  
  85.35.Kt (Nanotube devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/4/047305       OR      https://cpl.iphy.ac.cn/Y2015/V32/I4/047305
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LU Qi-Jun
ZHU Zhang-Ming
YANG Yin-Tang
DING Rui-Xue
[1] http://public.itrs.net
[2] En Y F, Zhu Z M and Hao Y 2010 Chin. Phys. Lett. 27 078401
[3] Chen B J, Tang Z A and Ju Y J 2014 Chin. Phys. Lett. 31 057102
[4] Koo K H, Cho H, Kapur P and Saraswat K C 2007 IEEE Trans. Electron Devices 54 3206
[5] Srivastava N and Banerjee K 2005 Int. Conf. Comput. Aided Design (San Jose CA 6–10 November 2005) p 383
[6] Haruehanroengra S and Wang W 2007 IEEE Electron Device Lett. 28 756
[7] Li Y, Zheng L P, Zhang W, Xu Z J, Ren C L, Huai P and Zhu Z Y 2011 Chin. Phys. Lett. 28 066101
[8] Naeemi A and Meindl J D 2006 IEEE Electron Device Lett. 27 338
[9] Naeemi A and Meindl J D 2007 IEEE Electron Device Lett. 28 135
[10] Li H J, Lu W G, Li J J, Bai X D and Gu C Z 2005 Phys. Rev. Lett. 95 086601
[11] Chiariello A G, Miano G and Maffucci A 2012 IEEE Trans. Electromagn. Compat. 54 158
[12] Nieuwoudt A and Massoud Y 2006 IEEE Trans. Electron Devices 53 2460
[13] Pop E, Mann D, Reifenberg J, Goodson K and Dai H 2005 Int. Electron. Devices Meeting Tech. Dig. (Washington DC 5 December 2005) p 253
[14] Pop E, Mann D, Cao J, Wang Q, Goodson K and Dai H 2005 Phys. Rev. Lett. 95 155505
Related articles from Frontiers Journals
[1] Yeliang Wang. Orbit-Transfer Torque Switching[J]. Chin. Phys. Lett., 2022, 39(7): 047305
[2] Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao. In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices[J]. Chin. Phys. Lett., 2022, 39(5): 047305
[3] Xing-Guo Ye, Peng-Fei Zhu, Wen-Zheng Xu, Nianze Shang, Kaihui Liu, and Zhi-Min Liao. Orbit-Transfer Torque Driven Field-Free Switching of Perpendicular Magnetization[J]. Chin. Phys. Lett., 2022, 39(3): 047305
[4] Yawen Guo, Wenqi Jiang, Xinru Wang, Fei Wan, Guanqing Wang, G. H. Zhou, Z. B. Siu, Mansoor B. A. Jalil, and Yuan Li. Effect of Geometrical Structure on Transport Properties of Silicene Nanoconstrictions[J]. Chin. Phys. Lett., 2021, 38(12): 047305
[5] Fan Gao and Yongqing Li. Influence of Device Geometry on Transport Properties of Topological Insulator Microflakes[J]. Chin. Phys. Lett., 2021, 38(11): 047305
[6] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 047305
[7] Yi-Fan He , Lei-Xi Wang , Zhi-Xing Xiao , Ya-Wei Lv, Lei Liao , and Chang-Zhong Jiang . Normal Strain-Induced Tunneling Behavior Promotion in van der Waals Heterostructures[J]. Chin. Phys. Lett., 2020, 37(8): 047305
[8] Lu-Lu Yang, Jun-Jie Shi, Min Zhang, Zhong-Ming Wei, Yi-Min Ding, Meng Wu, Yong He, Yu-Lang Cen, Wen-Hui Guo, Shu-Hang Pan, Yao-Hui Zhu. The 2D InSe/WS$_2$ Heterostructure with Enhanced Optoelectronic Performance in the Visible Region[J]. Chin. Phys. Lett., 2019, 36(9): 047305
[9] Gufeng Fu, Fang Cheng. Anisotropic Transport on Monolayer and Multilayer Phosphorene in the Presence of an Electric Field[J]. Chin. Phys. Lett., 2019, 36(5): 047305
[10] Ze-Long He, Qiang Li, Kong-Fa Chen, Ji-Yuan Bai, Sui-Hu Dang. Fano Effect and Anti-Resonance Band in a Parallel-Coupled Double Quantum Dot System with Two Multi-Quantum Dot Chains[J]. Chin. Phys. Lett., 2018, 35(9): 047305
[11] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 047305
[12] Hong-Jun Wang, Yuan-Yuan Zhu, Jing Zhou, Yong Liu. Electrical Conductivity of a Single Electro-deposited CoZn Nanowire[J]. Chin. Phys. Lett., 2018, 35(7): 047305
[13] Ze-Long He, Ji-Yuan Bai, Shu-Jiang Ye, Li Li, Chun-Xia Li. Quantum Switch and Efficient Spin-Filter in a System Consisting of Multiple Three-Quantum-Dot Rings[J]. Chin. Phys. Lett., 2017, 34(8): 047305
[14] Li-Ling Zhou, Xue-Yun Zhou, Rong Cheng, Cui-Ling Hou, Hong Shen. Local Heating in a Normal-Metal–Quantum-Dot–Superconductor System without Electric Voltage Bias[J]. Chin. Phys. Lett., 2017, 34(6): 047305
[15] Shi-Li Yan, Zhi-Jian Xie, Jian-Hao Chen, Takashi Taniguchi, Kenji Watanabe. Electrically Tunable Energy Bandgap in Dual-Gated Ultra-Thin Black Phosphorus Field Effect Transistors[J]. Chin. Phys. Lett., 2017, 34(4): 047305
Viewed
Full text


Abstract