Chin. Phys. Lett.  2015, Vol. 32 Issue (4): 047401    DOI: 10.1088/0256-307X/32/4/047401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Universality of a Critical Magnetic Field in a Holographic Superconductor
D. Momeni**, R. Myrzakulov
Eurasian International Center for Theoretical Physics and Department of General and Theoretical Physics, Eurasian National University, Astana 010008, Kazakhstan
Cite this article:   
D. Momeni, R. Myrzakulov 2015 Chin. Phys. Lett. 32 047401
Download: PDF(486KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study aspects of holographic superconductors analytically in the presence of a constant external magnetic field. It is shown that the critical temperature and the critical magnetic field can be calculated at nonzero temperature. We detect the Meissner effect in such superconductors. A universal relation between black hole mass M and critical magnetic field Hc is proposed to be Hc/M2/3≤0.687365. We also discuss some aspects of phase transition in terms of black hole entropy and Bekenstein's entropy to the energy upper bound.

Received: 11 October 2014      Published: 30 April 2015
PACS:  74.62.Bf (Effects of material synthesis, crystal structure, and chemical composition)  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
  11.25.Tq (Gauge/string duality)  
  44.05.+e (Analytical and numerical techniques)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/4/047401       OR      https://cpl.iphy.ac.cn/Y2015/V32/I4/047401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
D. Momeni
R. Myrzakulov

[1] Horowitz G T and Polchinski J 2009 Approaches to Quantum Gravity (Cambridge: Cambridge University Press)
[2] Witten E 1998 Adv. Theor. Math. Phys. 2 253
[3] Maldacena J 1999 Adv. Theor. Math. Phys. 2 231
     Maldacena J 1999 Int. J. Theor. Phys. 38 1113
[4] Gubser S S 2008 Phys. Rev. D 78 065034
[5] Hartnoll S A, Herzog C P and Horowitz G T 2008 Phys. Rev. Lett. 101 031601
[6] Hartnoll S A 2009 Class. Quantum Grav. 26 224002
[7] Herzog C P 2009 J. Phys. A 42 343001
[8] Horowitz G T 2010 arXiv:1002.1722 [hep-th]
[9] Hartnoll S A, Herzog C P and Horowitz G T 2008 J. High Energy Phys. 0812 015
[10] Cai R G, Li L, Li L F and Yang R Q 2014 J. High Energy Phys. 1404 016
[11] Cai R G, Li L and Li L F 2014 J. High Energy Phys. 1401 032
[12] Momeni D, Majd N and Myrzakulov R 2012 Europhys. Lett. 97 61001
[13] Roychowdhury D 2013 J. High Energy Phys. 1305 162
[14] Cai R G, Li L, Li L F and Su R K 2013 J. High Energy Phys. 1306 063
[15] Arias R E and Landea I S 2013 J. High Energy Phys. 1301 157
[16] Gangopadhyay S and Roychowdhury D 2012 J. High Energy Phys. 1208 104
[17] Chen S, Pan Q and Jing J 2013 Commun. Theor. Phys. 60 471
[18] Cai R G, He S, Li L and Zhang Y L 2012 J. High Energy Phys. 1207 027
[19] Kuang X M, Li W J and Ling Y 2012 Class. Quantum Grav. 29 085015
[20] Murray J M and Tesanovic Z 2011 Phys. Rev. D 83 126011
[21] Cai R G, Nie Z Y and Zhang H Q 2011 Phys. Rev. D 83 066013
[22] Momeni D, Myrzakulov R and Raza M 2013 Int. J. Mod. Phys. A 28 1350096
[23] Zeng H B, Sun W M and Zong H S 2011 Phys. Rev. D 83 046010
[24] Cai R G, Nie Z Y and Zhang H Q 2010 Phys. Rev. D 82 066007
[25] Zeng H B, Fan Z Y and Zong H S 2010 Phys. Rev. D 81 106001
[26] Chen J W, Kao Y J, Maity D, Wen W Y and Yeh C P 2010 Phys. Rev. D 81 106008
[27] Zeng H B, Fan Z Y and Zong H S 2010 Phys. Rev. D 82 126008
[28] Chen S B, Pa Q Y and Jing J L 2012 Chin. Phys. B 21 040403
[29] Gao D 2012 Phys. Lett. A 376 1705
[30] Ge X H, Tu S F and Wang B 2012 J. High Energy Phys. 1209 088
[31] Krikun A 2013 arXiv:1312.1588 [hep-th]
[32] Nishida M 2014 arXiv:1403.6070 [hep-th]
[33] Li L F, Cai R G, Li L and Wang Y Q 2014 arXiv:1405.0382 [hep-th]
[34] Momeni D, Raza M and Myrzakulov R 2014 Eur. Phys. J. Plus 129 30
[35] Momeni D, Raza M, Setare M R and Myrzakulov R 2013 Int. J. Theor. Phys. 52 2773
[36] Momeni D, Raza M and Myrzakulov R 2013 J. Grav. 2013 782512
[37] Momeni D, Myrzakulov R, Sebastiani L and Setare M R 2012 arXiv:1210.7965 [hep-th]
[38] Momeni D, Setare M R and Myrzakulov R 2012 Int. J. Mod. Phys. A 27 1250128
[39] Setare M R and Momeni D 2011 Europhys. Lett. 96 60006
[40] Momeni D and Setare M R 2011 Mod. Phys. Lett. A 26 2889
[41] Momeni D, Setare M R and Majd N 2011 J. High Energy Phys. 1105 118
[42] Cai R G, Li L, Zhang H Q and Zhang Y L 2011 Phys. Rev. D 84 126008
[43] Wu J P 2010 arXiv:1006.0456 [hep-th]
[44] Ge X H, Wang B, Wu S F and Yang G H 2010 J. High Energy Phys. 1008 108
[45] Domenech O, Montull M, Pomarol A, Salvio A and Silva P J 2010 J. High Energy Phys. 1008 033
[46] Montull M, Pujolas O, Salvio A and Silva P J 2011 Phys. Rev. Lett. 107 181601
[47] Montull M, Pujolas O, Salvio A and Silva P J 2012 J. High Energy Phys. 1204 135
[48] Salvio A 2012 J. High Energy Phys. 1209 134
[49] Zeng H, Fan Z and Ren Z 2009 Phys. Rev. D 80 066001
[50] Romans L J 1992 Nucl. Phys. B 383 395
[51] Gubser S S 2008 arXiv:0801.2977 [hep-th]
[52] Hartnoll S A, Herzog C P and Horowitz G T 2008 arXiv:0803.3295 [hep-th]
[53] Yin L, Hou D and Ren H C 2013 arXiv:1311.3847 [hep-th]
[54] Gregory R, Kanno S and Soda J 2009 J. High Energy Phys. 0910 010
[55] Ge X H and Leng H Q 2012 Prog. Theor. Phys. 128 1211
[56] Cui S L and Xue Z 2013 arXiv:1306.2013 [hep-th]
[57] Zhao Z, Pan Q and Jing J 2013 arXiv:1311.6260 [hep-th]
[58] Roychowdhury D 2012 Phys. Rev. D 86 106009
[59] Bekenstein J D 1981 Phys. Rev. D 23 287
[60] Nakano E and Wen W Y 2008 Phys. Rev. D 78 046004
[61] Momeni D, Nakano E, Setare M R and Wen W Y 2013 Int. J. Mod. Phys. A 28 1350024
[62] Ehrenfest P 1934 Commun. Phys. Lab. Leiden suppl.75b
[63] Rutgers N 1934 Physica 1 1055

Related articles from Frontiers Journals
[1] Fazhi Yang, Giao Ngoc Phan, Renjie Zhang, Jin Zhao, Jiajun Li, Zouyouwei Lu, John Schneeloch, Ruidan Zhong, Mingwei Ma, Genda Gu, Xiaoli Dong, Tian Qian, and Hong Ding. Fe$_{1+y}$Te$_{x}$Se$_{1-x}$: A Delicate and Tunable Majorana Material[J]. Chin. Phys. Lett., 2023, 40(1): 047401
[2] Xue Ming, Chengping He, Xiyu Zhu, Huiyang Gou, and Hai-Hu Wen. Growth and Characterization of a New Superconductor GaBa$_{2}$Ca$_{3}$Cu$_{4}$O$_{11+\delta}$[J]. Chin. Phys. Lett., 2023, 40(1): 047401
[3] Kang Zhao, Qing-Ge Mu, Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Tong Liu, Bo-Jin Pan, Shuai Zhang, Gen-Fu Chen, and Zhi-An Ren. A New Quasi-One-Dimensional Ternary Molybdenum Pnictide Rb$_{2}$Mo$_{3}$As$_{3}$ with Superconducting Transition at 10.5 K[J]. Chin. Phys. Lett., 2020, 37(9): 047401
[4] Hui-Can Mao, Bing-Feng Hu, Yuan-Hua Xia, Xi-Ping Chen, Cao Wang, Zhi-Cheng Wang, Guang-Han Cao, Shi-Liang Li, Hui-Qian Luo. Neutron Powder Diffraction Study on the Non-Superconducting Phases of ThFeAsN$_{1-x}$O$_x$ ($x=0.15, 0.6$) Iron Pnictide[J]. Chin. Phys. Lett., 2019, 36(10): 047401
[5] Qinyan Gu, Dingyu Xing, Jian Sun. Superconducting Single-Layer T-Graphene and Novel Synthesis Routes[J]. Chin. Phys. Lett., 2019, 36(9): 047401
[6] Li-Jun Cui, Ping-Xiang Zhang, Guo Yan, Yong Feng, Xiang-Hong Liu, Jian-Feng Li, Xi-Feng Pan, Sheng-Nan Zhang, Xiao-Bo Ma, Jin-Shan Li. Influence of Precursor Powder Fabrication Methods on the Superconducting Properties of Bi-2223 Tapes[J]. Chin. Phys. Lett., 2019, 36(2): 047401
[7] Shuai Zhang, Mo-Ran Gao, Huan-Yan Fu, Xin-Min Wang, Zhi-An Ren, Gen-Fu Chen. Electric Field Induced Permanent Superconductivity in Layered Metal Nitride Chlorides HfNCl and ZrNCl[J]. Chin. Phys. Lett., 2018, 35(9): 047401
[8] Yu-Jia Long, Ling-Xiao Zhao, Pei-Pei Wang, Huai-Xin Yang, Jian-Qi Li, Hai Zi, Zhi-An Ren, Cong Ren, Gen-Fu Chen. Single Crystal Growth and Physical Property Characterization of Non-centrosymmetric Superconductor PbTaSe$_2$[J]. Chin. Phys. Lett., 2016, 33(03): 047401
[9] YUAN Rui-Hua, DONG Tao, WANG Nan-Lin . The Optical Study of Single Crystalline Cs0.8(Fe1.05Se)2 with High Néel Temperature[J]. Chin. Phys. Lett., 2013, 30(7): 047401
[10] LIU Shan-Yu, ZHANG Wen-Tao, ZHAO Lin, LIU Hai-Yun, WU Yue, LIU Guo-Dong, DONG Xiao-Li, and ZHOU Xing-Jiang. Growth and Characterization of High-Quality Single Crystals of Ni- and Zn-Doped Bi2Sr2Ca(Cu2?xMx)O8 (M = Ni or Zn) High-Temperature Superconductors[J]. Chin. Phys. Lett., 2012, 29(8): 047401
[11] TAO Qian, SHEN Jing-Qin, LI Lin-Jun, LIN Xiao, LUO Yong-Kang, CAO Guang-Han, XU Zhu-An. Upper Critical Fields and Anisotropy of BaFe1.9Ni0.1As2 Single Crystals[J]. Chin. Phys. Lett., 2009, 26(9): 047401
[12] MA Yan-Wei, GAO Zhao-Shun, WANG Lei, QI Yan-Peng, WANG Dong-Liang, ZHANG Xian-Ping. Simple One-Step Synthesis and Superconducting Properties of SmFeAsO1-xFx[J]. Chin. Phys. Lett., 2009, 26(3): 047401
[13] CHEN Gen-Fu, LI Zheng, LI Gang, HU Wan-Zheng, DONG Jing, ZHOU Jun, ZHANG Xiao-Dong, ZHENG Ping, WANG Nan-Lin, LUO Jian-Lin. Superconductivity in Hole-Doped (Sr1-xKx)Fe2As2[J]. Chin. Phys. Lett., 2008, 25(9): 047401
[14] CHEN Gen-Fu, LI Zheng, WU Dan, DONG Jing, LI Gang, HU Wan-Zheng, ZHENGPing, LUO Jian-Lin, WANG Nan-Lin. Element Substitution Effect in Transition Metal Oxypnictide Re(O1-xFx)TAs (Re=rare earth, T=transition metal)[J]. Chin. Phys. Lett., 2008, 25(6): 047401
[15] SUN Xue-Feng, YU Jing, WANG Fa, ZHANG Han. Relation of Structure and Superconductivity in Self-Compensating Y1-xCaxBa2-xLaxCu3Oy[J]. Chin. Phys. Lett., 2006, 23(8): 047401
Viewed
Full text


Abstract