CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Thermoelectric Transport by Surface States in Bi2Se3-Based Topological Insulator Thin Films |
LI Long-Long1**, XU Wen1,2 |
1Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031
2Department of Physics, Yunnan University, Kunming 650091 |
|
Cite this article: |
LI Long-Long, XU Wen 2015 Chin. Phys. Lett. 32 047304 |
|
|
Abstract We develop a tractable theoretical model to investigate the thermoelectric (TE) transport properties of surface states in topological insulator thin films (TITFs) of Bi2Se3 at room temperature. The hybridization between top and bottom surface states in the TITF plays a significant role. With the increasing hybridization-induced surface gap, the electrical conductivity and electron thermal conductivity decrease while the Seebeck coefficient increases. This is due to the metal-semiconductor transition induced by the surface-state hybridization. Based on these TE transport coefficients, the TE figure-of-merit ZT is evaluated. It is shown that ZT can be greatly improved by the surface-state hybridization. Our theoretical results are pertinent to the exploration of the TE transport properties of surface states in TITFs and to the potential application of Bi2Se3-based TITFs as high-performance TE materials and devices.
|
|
Received: 23 January 2015
Published: 30 April 2015
|
|
PACS: |
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
74.25.fg
|
(Thermoelectric effects)
|
|
|
|
|
[1] Goldsmid H J 1986 Electron. Refrigeration (London: Pion) p 10
[2] Tritt T M and Subramanian M A 2006 MRS Bull. 31 188
[3] Balandin A A and Wang K L 1998 Phys. Rev. B 58 1544
[4] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[5] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S and Snyder G J 2008 Science 321 554
[6] Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P and Gogna P 2007 Adv. Mater. 19 1043
[7] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[8] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[9] Checkelsky J G, Hor Y S, Cava R J and Ong N P 2011 Phys. Rev. Lett. 106 196801
[10] Steinberg H, Laloe J B, Fatemi V, Moodera J S and Jarillo-Herrero P 2011 Phys. Rev. B 84 233101
[11] Xiu F, He L, Wang Y, Cheng L, Chang L T, Lang M, Huang G, Kou X, Zhou Y, Jiang X, Chen Z, Zou J, Shailos A and Wang K L 2011 Nat. Nanotechnol. 6 216
[12] Wang Y, Xiu F, Cheng L, He L, Lang M, Tang J, Kou X, Yu X, Jiang X, Chen Z, Zou J and Wang K L 2012 Nano Lett. 12 1170
[13] Hong S S, Cha J J, Kong D and Cui Y 2012 Nat. Commun. 3 757
[14] Zhang H, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
[15] Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nat. Phys. 5 398
[16] Peng H, Lai K, Kong D, Meister S, Chen Y, Qi X L, Zhang S C, Shen Z X and Cui Y 2010 Nat. Mater. 9 225
[17] Goyal V, Teweldebrhan D and Balandina A A 2010 Appl. Phys. Lett. 97 133117
[18] Linder J, Yokoyama T and Sudbo A 2009 Phys. Rev. B 80 205401
[19] Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C and Xue Q K 2010 Nat. Phys. 6 584
[20] Bansal N, Kim Y S, Brahlek M, Edrey E and Oh S 2012 Phys. Rev. Lett. 109 116804
[21] Li L L and Xu W 2014 Appl. Phys. Lett. 105 063503
[22] Mahan G D and Sofo J 1996 Proc. Natl. Acad. Sci. USA 93 7436
[23] Jonson M and Mahan G D 1980 Phys. Rev. B 21 4223
[24] Humphrey T E and Linke H 2005 Phys. Rev. Lett. 94 096601 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|