Chin. Phys. Lett.  2015, Vol. 32 Issue (12): 128901    DOI: 10.1088/0256-307X/32/12/128901
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Factors That Affect the Centrality Controllability of Scale-Free Networks
HU Dong1, SUN Xian1, LI Ping1**, CHEN Yan1, ZHANG Jie2**
1Center for Intelligent and Networked Systems, School of Computer Science, Southwest Petroleum University, Chengdu 610500
2Center for Computational Systems Biology, Fudan University, Shanghai 200433
Cite this article:   
HU Dong, SUN Xian, LI Ping et al  2015 Chin. Phys. Lett. 32 128901
Download: PDF(744KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The influence of a node in a network can be characterized by its macroscopic properties such as eigenvector centrality. An issue of significant theoretical and practical interest is to modify the influence or roles of the nodes in a network, and recent advances indicate that this can be achieved by just controlling a subset of nodes: the so-called controllers. However, the relationship between the structural properties of a network and its controllability, e.g., the control of node importance, is still not well understood. Here we systematically explore this relationship by constructing scale-free networks with a fixed degree sequence and tunable network characteristics. We calculate the relative size (nC*) of the minimal controlling set required to control the importance of each individual node in a network. It is found that while clustering has no significant impact on nC*, changes in degree–degree correlations, heterogeneity and the average degree of networks demonstrate a discernible impact on its controllability.
Received: 04 August 2015      Published: 05 January 2016
PACS:  89.75.Hc (Networks and genealogical trees)  
  05.45.Xt (Synchronization; coupled oscillators)  
  89.75.Da (Systems obeying scaling laws)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/12/128901       OR      https://cpl.iphy.ac.cn/Y2015/V32/I12/128901
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HU Dong
SUN Xian
LI Ping
CHEN Yan
ZHANG Jie
[1] Lombardi A and H?rnquist M 2007 Phys. Rev. E 75 056110
[2] Liu Y, Slotine J and Barabási A 2011 Nature 473 167
[3] Liu Y, Slotine J and Barabási A 2012 PLoS ONE 7 e44459
[4] Wang W, Ni X, Lai Y and Grebogi C 2012 Phys. Rev. E 85 026115
[5] Yan G, Ren J, Lai Y, Lai C and Li B 2012 Phys. Rev. Lett. 108 218703
[6] Nepusz T and Vicsek T 2012 Nat. Phys. 8 568
[7] Pósfai M, Liu Y, Slotine J and Barabási A 2013 Sci. Rep. 3 1067
[8] Nicosia V, Criado R, Romance M, Russo G and Latora V 2012 Sci. Rep. 2 218
[9] Hou L, Lao S, Liu G and Bai L 2012 Chin. Phys. Lett. 29 108901
[10] Pastor-Satorras R and Vespignani A 2004 Evolution and Structure of the Internet (Cambridge: Cambridge University Press)
[11] Bonacich P 1972 J. Math. Sociol. 2 113
[12] Bonacich P 1987 Am. J. Sociol. 92 1170
[13] Bonacich P and Lloyd P 2001 Soc. Networks 23 191
[14] Brin S and Page L 1998 Comput. Networks ISDN Syst. 30 107
[15] Zhang J, Xu X, Li P, Zhang K and Small M 2011 Chaos 21 016107
[16] Gleiser B and Danon L 2003 Adv. Complex Syst. 6 565
[17] Leskovec J, Kleinberg J and Faloutsos C 2007 ACM T Knowl. Disc. Data 1 2
[18] West D 2001 Introduction Graph Theory (Englewood Cliffs: Prentice Hall) vol 2
[19] Catanzaro M, Bogu?á M and Pastor-Satorras R 2005 Phys. Rev. E 71 027103
[20] Press W, Teukolsky S, Vetterling W and Flannery B 2009 Numerical Recipes in C: The Art of Scientific Computing (Cambridge: Cambridge University Press) vol 994
[21] Mieghem P, Wang H, Ge X, Tang S and Kuipers F 2010 Eur. Phys. J. B 76 643
[22] Watts D and Strogatz S 1998 Nature 393 440
[23] Pastor-Satorras R, Vázquez A and Vespignani A 2001 Phys. Rev. Lett. 87 258701
[24] Maslov S and Sneppen K 2002 Science 296 910
[25] Newman M 2002 Phys. Rev. Lett. 89 208701
[26] Xu X, Zhang J, Li P and Small M 2011 Physica A 390 4621
Related articles from Frontiers Journals
[1] Qing-Xian Wang, Jun-Jie Zhang, Xiao-Yu Shi, Ming-Sheng Shang. User Heterogeneity and Individualized Recommender[J]. Chin. Phys. Lett., 2017, 34(6): 128901
[2] Wen Xiao, Chao Yang, Ya-Ping Yang, Yu-Guang Chen. Phase Transition in Recovery Process of Complex Networks[J]. Chin. Phys. Lett., 2017, 34(5): 128901
[3] Rui-Wu Niu, Gui-Jun Pan. Self-Organized Optimization of Transport on Complex Networks[J]. Chin. Phys. Lett., 2016, 33(06): 128901
[4] Liu-Hua Zhu. Effects of Reduced Frequency on Network Configuration and Synchronization Transition[J]. Chin. Phys. Lett., 2016, 33(05): 128901
[5] Xiu-Lian Xu, Chun-Ping Liu, Da-Ren He. A Collaboration Network Model with Multiple Evolving Factors[J]. Chin. Phys. Lett., 2016, 33(04): 128901
[6] Wei Zheng, Qian Pan, Chen Sun, Yu-Fan Deng, Xiao-Kang Zhao, Zhao Kang. Fractal Analysis of Mobile Social Networks[J]. Chin. Phys. Lett., 2016, 33(03): 128901
[7] Yi-Run Ruan, Song-Yang Lao, Yan-Dong Xiao, Jun-De Wang, Liang Bai. Identifying Influence of Nodes in Complex Networks with Coreness Centrality: Decreasing the Impact of Densely Local Connection[J]. Chin. Phys. Lett., 2016, 33(02): 128901
[8] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 128901
[9] BAI Liang, XIAO Yan-Dong, HOU Lv-Lin, LAO Song-Yang. Smart Rewiring: Improving Network Robustness Faster[J]. Chin. Phys. Lett., 2015, 32(07): 128901
[10] LI Ling, GUAN Ji-Hong, ZHOU Shui-Geng. Efficiency-Controllable Random Walks on a Class of Recursive Scale-Free Trees with a Deep Trap[J]. Chin. Phys. Lett., 2015, 32(03): 128901
[11] JING Xing-Li, LING Xiang, HU Mao-Bin, SHI Qing. Random Walks on Deterministic Weighted Scale-Free Small-World Networks with a Perfect Trap[J]. Chin. Phys. Lett., 2014, 31(08): 128901
[12] HU Jian-Quan, YANG Hong-Chun, YANG Yu-Ming, FU Chuan-Ji, YANG Chun, SHI Xiao-Hong, JIA Xiao. Two Typical Discontinuous Transitions Observed in a Generalized Achlioptas Percolation Process[J]. Chin. Phys. Lett., 2014, 31(07): 128901
[13] LING Xiang. Effect of Mixing Assortativity on Extreme Events in Complex Networks[J]. Chin. Phys. Lett., 2014, 31(06): 128901
[14] ZHANG Xiao-Ke, WU Jun, TAN Yue-Jin, DENG Hong-Zhong, LI Yong . Structural Robustness of Weighted Complex Networks Based on Natural Connectivity[J]. Chin. Phys. Lett., 2013, 30(10): 128901
[15] ZHANG Yong, JU Xian-Meng, ZHANG Li-Jie, XU Xin-Jian. Statistics of Leaders in Index-Driven Networks[J]. Chin. Phys. Lett., 2013, 30(5): 128901
Viewed
Full text


Abstract