Chin. Phys. Lett.  2015, Vol. 32 Issue (12): 121202    DOI: 10.1088/0256-307X/32/12/121202
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Quark Loop Contribution to the Gluon Damping Rate in Hot QCD
MA Zhi-Lei, ZHU Jia-Qing, SHI Chao-Yi, LI Yun-De**
Department of Physics, Yunnan University, Kunming 650091
Cite this article:   
MA Zhi-Lei, ZHU Jia-Qing, SHI Chao-Yi et al  2015 Chin. Phys. Lett. 32 121202
Download: PDF(565KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The contribution of the quark loop to the gluon damping rate at zero momentum is calculated using the effective perturbative expansion technique developed by Braaten and Pisarski. It is shown that in the temperature range accessible in the present heavy-ion experiments, the contribution of the quark loop can not be ignored. The numerical results show that the quark loop provides an apparent contribution to the gluon damping rate at temperatures of experimental interest.

Received: 10 July 2015      Published: 05 January 2016
PACS:  12.38.Mh (Quark-gluon plasma)  
  12.38.Cy (Summation of perturbation theory)  
  12.38.Bx (Perturbative calculations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/12/121202       OR      https://cpl.iphy.ac.cn/Y2015/V32/I12/121202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MA Zhi-Lei
ZHU Jia-Qing
SHI Chao-Yi
LI Yun-De

[1] Kajantie K and Kapusta J 1985 Ann. Phys. 160 477
[2] Kalashnikov O K and Klimov V V 1988 Sov. J. Nucl. Phys. 31 699
[3] Gross D J, Pisarski R D and Yaffe L G 1981 Rev. Mod. Phys. 53 43
[4] Heinz U, Kajantie K and Toimela T 1987 Phys. Lett. B 183 96
[5] Hansson T H and Zahed I 1987 Phys. Rev. Lett. 58 2397 Nucl. Phys. B 292 725
[6] Blaizot J P and Iancu E 2002 Phys. Rep. 359 355
[7] Elze H T, Heinz U, Kajantie K and Toimela T 1988 Z. Phys. C 37 305
[8] Elze H T, Kajantie K and Toimela T 1988 Z. Phys. C 37 601
[9] Carrington M E, Hansson T H, Yamagishi H and Zahed I 1989 Ann. Phys. 190 373
[10] Gatoff G and Kapusta J 1990 Phys. Rev. D 41 611
[11] Kapusta J and Toimela T 1989 Phys. Rev. D 39 3197
[12] Kobes R and Kunstatter G 1988 Phys. Rev. Lett. 61 392
[13] Kobes R, Kunstatter G and Mak K W 1989 Phys. Lett. B 223 433
[14] Parikh J C, Siemens P J and Lopez J A 1989 Pramana 32 555
[15] Braaten E and Pisarski R D 1990 Phys. Rev. Lett. 64 1338
[16] Braaten E and Pisarski R D 1990 Nucl. Phys. B 337 569
[17] Braaten E and Pisarski R D 1990 Nucl. Phys. B 339 310
[18] Pisarski R D 1989 Phys. Rev. Lett. 63 1129
[19] Pisarski R D 1991 Nucl. Phys. A 525 175
[20] Thoma M H 1995 arXiv:9503400[hep-ph]
[21] Bellac M L 1996 Thermal Field Theory (New York: Cambridge University Press)
[22] Anderson J O and Strickland M 2005 Ann. Phys. 317 281
[23] Zhu J Q and Li Y D 2015 Nucl. Phys. A 939 71
[24] Zhu J Q, Ma Z L, Shi C Y and Li Y D 2015 Nucl. Phys. A 942 54
[25] Laine M, Philipsen O, Romatschke P and Tassler M 2007 J. High Energy Phys. 0703 054
[26] Kajantie K, Laine M, Rummukainen K and Shaposhnikov M 1997 Nucl. Phys. B 503 357
[27] Laine M and Schroder Y 2006 Phys. Rev. D 73 085009
[28] Braaten E and Pisarski R D 1990 Phys. Rev. D 42 2156
[29] Braaten E, Pisarski R D and Yuan T C 1990 Phys. Rev. Lett. 64 2242
[30] Thoma M H 2000 arXiv:0010164v1[hep-ph]
[31] Braaten E and Pisarski R D 1992 Phys. Rev. D 46 1829
[32] Kapusta J I and Gale C 2006 Finite-Temperature Field Theory Principles and Applications (New York: Cambridge University Press)
[33] Pisarski R D 1989 Physica A 158 146
[34] Landsman N P and Van Weert Ch G 1987 Phys. Rep. 145 141
[35] Henning P 1995 Phys. Rep. 253 235
[36] Hou D F and Li J R 1996 Z. Phys. C 71 503
[37] Hou D F, Ochs S and Li J R 1996 Phys. Rev. D 54 7634

Related articles from Frontiers Journals
[1] Shanjin Wu, Chun Shen, and Huichao Song. Dynamically Exploring the QCD Matter at Finite Temperatures and Densities: A Short Review[J]. Chin. Phys. Lett., 2021, 38(8): 121202
[2] Zonghou Han , Baoyi Chen , and Yunpeng Liu. Critical Temperature of Deconfinement in a Constrained Space Using a Bag Model at Vanishing Baryon Density[J]. Chin. Phys. Lett., 2020, 37(11): 121202
[3] Jing-Ya Zhang, Luan Cheng. Strong Interaction Effect on Jet Energy Loss with Detailed Balance[J]. Chin. Phys. Lett., 2017, 34(10): 121202
[4] Liang-Kai Wu, Xiang-Fei Meng, Fa-Ling Zhang. Curvature of Pseudocritical Transition Line for Two-Flavor QCD with Improved Kogut–Susskind Quarks[J]. Chin. Phys. Lett., 2017, 34(4): 121202
[5] Barbara Betz, Miklos Gyulassy. Sensitivity of Pion versus Parton-Jet Nuclear Modification Factors to the Path-Length Dependence of Jet-Energy Loss at RHIC and LHC[J]. Chin. Phys. Lett., 2015, 32(12): 121202
[6] XU Shu-Sheng, JIANG Yu, SHI Chao, CUI Zhu-Fang, ZONG Hong-Shi. A Model-Independent Discussion of Quark Number Density and Quark Condensate at Zero Temperature and Finite Quark Chemical Potential[J]. Chin. Phys. Lett., 2015, 32(12): 121202
[7] SHI Chao-Yi, ZHU Jia-Qing, MA Zhi-Lei, LI Yun-De. Thermal Width for Heavy Quarkonium in the Static Limit[J]. Chin. Phys. Lett., 2015, 32(12): 121202
[8] Jiechen Xu, Jinfeng Liao, Miklos Gyulassy. Consistency of Perfect Fluidity and Jet Quenching in Semi-Quark-Gluon Monopole Plasmas[J]. Chin. Phys. Lett., 2015, 32(09): 121202
[9] TIAN Ya-Lan, CUI Zhu-Fang, WANG Bin, SHI Yuan-Mei, YANG You-Chang, ZONG Hong-Shi. Dyson–Schwinger Equations of Chiral Chemical Potential[J]. Chin. Phys. Lett., 2015, 32(08): 121202
[10] CAI Yan-Bing, YANG Hai-Tao, LI Yun-De. Production of High-pT Kaon and Pion in pp and Au–Au Collisions by Resolved Photoproduction Processes[J]. Chin. Phys. Lett., 2015, 32(08): 121202
[11] JIANG Yu, HOU Feng-Yao, LUO Cui-Bai, ZONG Hong-Shi. Quark Number Susceptibility around the Chiral Critical End Point[J]. Chin. Phys. Lett., 2015, 32(02): 121202
[12] YU Gong-Ming, LI Yun-De. Photoproduction of Light Vector Meson in Relativistic Heavy Ion Collisions[J]. Chin. Phys. Lett., 2014, 31(1): 121202
[13] P. Guptaroy, S. Guptaroy. Direct Photon Production at RHIC and LHC-Energies: Measured Data Versus a Model[J]. Chin. Phys. Lett., 2013, 30(6): 121202
[14] LI Han-Lin, ZHANG Ben-Wei, WANG En-Ke. Jet Energy Shift due to Non-Perturbative QCD Effects in p+p Collisions Studied with PYTHIA[J]. Chin. Phys. Lett., 2013, 30(5): 121202
[15] TANG Ze-Bo, YI Li, RUAN Li-Juan, SHAO Ming, LI Cheng, CHEN Hong-Fang, Bedanga Mohanty, XU Zhang-Bu. The Statistical Origin of Constituent-Quark Scaling in QGP Hadronization[J]. Chin. Phys. Lett., 2013, 30(3): 121202
Viewed
Full text


Abstract