THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
|
|
|
|
Discussion of Various Susceptibilities within Thermal and Dense Quantum Chromodynamics |
XU Shu-Sheng1,5, SHI Yuan-Mei1,2, YANG You-Chang1,3, CUI Zhu-Fang1,5, ZONG Hong-Shi1,4,5** |
1Department of Physics, Nanjing University, Nanjing 210093
2Department of Physics and Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171
3School of Physics and Mechanical-Electrical Engineering, Zunyi Normal College, Zunyi 563002
4Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing 210093
5State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 |
|
Cite this article: |
XU Shu-Sheng, SHI Yuan-Mei, YANG You-Chang et al 2015 Chin. Phys. Lett. 32 121203 |
|
|
Abstract It is commonly accepted that the system undergoes a crossover at high temperature and low chemical potential beyond the chiral limit case, and the properties of the crossover region are important for researchers to understand the nature of strong interacting matters of quantum chromodynamics (QCD). Since at present there is no exact order of parameters of the phase transitions beyond the chiral limit, QCD susceptibilities are widely used as indicators. In this work various susceptibilities are discussed in the framework of Dyson–Schwinger equations. The results show that different kinds of susceptibilities give the same critical end point, which is the bifurcation point of the crossover region and the first order phase transition line of QCD. Nevertheless, different pseudo-critical points are found in the temperature axis. We think that defining a critical band is more suitable in the crossover region.
|
|
Received: 15 August 2015
Published: 05 January 2016
|
|
PACS: |
12.39.-x
|
(Phenomenological quark models)
|
|
12.39.Fe
|
(Chiral Lagrangians)
|
|
25.75.Nq
|
(Quark deconfinement, quark-gluon plasma production, and phase transitions)
|
|
|
|
|
[1] Asakawa M and Hatsuda T 2004 Phys. Rev. Lett. 92 012001
[2] Vogl U and Weise W 1991 Prog. Part. Nucl. Phys. 27 195
[3] Klevansky S P 1992 Rev. Mod. Phys. 64 649
[4] Hatsuda T and Kunihiro T 1994 Phys. Rep. 247 221
[5] Buballa M 2005 Phys. Rep. 407 205
[6] Cui Z F et al 2013 Eur. Phys. J. C 73 2612
Cui Z F, Shi C, Sun W M, Wang Y L and Zong H S 2014 Eur. Phys. J. C 74 2782
[7] Shi S, Yang Y C, Xia Y H, Cui Z F, Liu X J and Zong H S 2015 Phys. Rev. D 91 036006
[8] Kohyama H, Kimura D and Inagaki T 2015 Nucl. Phys. B 896 682
[9] Reinders L J, Rubinstein H and Yazaki S 1985 Phys. Rep. 127 1
[10] King I and Sachrajda C T 1987 Nucl. Phys. B 279 785
[11] Hatsuda T and Lee S H 1992 Phys. Rev. C 46 R34
[12] Klingl F, Kaiser N and Weise W 1997 Nucl. Phys. A 624 527
[13] Borsanyi S et al 2010 J. High Energy Phys. 1009 073
[14] Ejiri S and Yamada N 2013 Phys. Rev. Lett. 110 172001
[15] Forcrand P D, Langelage J, Philipsen O and Unger W 2014 Phys. Rev. Lett. 113 152002
[16] Braguta V V, Goy V A, Ilgenfritz E M, Kotov A Y, Molochkov A V, Muller-Preussker M and Petersson B 2015 J. High Energy Phys. 1506 094
[17] Endrodi G 2015 J. High Energy Phys. 1507 173
[18] Roberts C D and Williams A G 1994 Prog. Part. Nucl. Phys. 33 477
Roberts C D and Schmidt S M 2000 Prog. Part. Nucl. Phys. 45 S1
[19] Alkofer R and Smekal L V 2001 Phys. Rep. 353 281
[20] Jiang Y, Chen H, Sun W M and Zong H S 2013 J. High Energy Phys. 1304 14
Shi C, Wang Y L, Jiang Y, Cui Z F and Zong H S 2014 {\it J. High Energy Phys.} {1407} 14
[21] Cloet I C and Roberts C D 2014 Prog. Part. Nucl. Phys. 77 1
[22] Gutierrez E, Ahmad A, Ayala A, Bashir A and Raya A 2014 J. Phys. G 41 075002
[23] Zhao A M, Cui Z F, Jiang Y and Zong H S 2014 Phys. Rev. D 90 114031
[24] Wang B, Wang Y L, Cui Z F and Zong H S 2015 Phys. Rev. D 91 034017
Xu S S, Cui Z F, Wang B, Shi Y M, Yang Y C and Zong H S 2015 Phys. Rev. D 91 056003
[25] Zhu H X, Sun W M and Zong H S 2013 Chin. Phys. Lett. 30 051201
[26] Tian Y L, Cui Z F, Wang B, Shi Y M, Yang Y C and Zong H S 2015 Chin. Phys. Lett. 32 081101
[27] Jiang Y, Hou F Y, Luo C B and Zong H S 2015 Chin. Phys. Lett. 32 021201
[28] Zong H S, Hou F Y, Sun W M, Ping J L and Zhao E G 2005 Phys. Rev. C 72 035202
[29] Zong H S, Shi Y M, Sun W M and Ping J L 2006 Phys. Rev. C 73 035206
[30] Shi Y M, Wu K P, Sun W M, Zong H S and Ping J L 2006 Phys. Lett. B 639 248
[31] Chang L, Liu Y X, Sun W M and Zong H S 2008 Phys. Lett. B 669 327
[32] Chang L, Liu Y X, Roberts C D, Shi Y M, Sun W M and Zong H S 2009 Phys. Rev. C 79 035209
[33] Cui Z F, Hou F Y, Shi Y M, Wang Y L and Zong H S 2015 Ann. Phys. (N. Y.) 358 172
[34] Qin S X, Chang L, Chen H, Liu Y X and Roberts C D 2011 Phys. Rev. Lett. 106 172301
[35] Maris P and Roberts C D 1997 Phys. Rev. C 56 3369
[36] Borsanyi S, Fodor Z, Hoelbling C, Katz S D, Krieg S, Ratti C and Szabo K K 2010 J. High Energy Phys. 1009 73
[37] Du Y L, Cui Z F, Xia Y H and Zong H S 2013 Phys. Rev. D 88 114019 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|