Chin. Phys. Lett.  2015, Vol. 32 Issue (10): 107303    DOI: 10.1088/0256-307X/32/10/107303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Effect of Thermal Annealing on Light-Induced Minority Carrier Lifetime Enhancement in Boron-Doped Czochralski Silicon
WANG Hong-Zhe, ZHENG Song-Sheng, CHEN Chao**
College of Energy, Xiamen University, Xiamen 361005
Cite this article:   
WANG Hong-Zhe, ZHENG Song-Sheng, CHEN Chao 2015 Chin. Phys. Lett. 32 107303
Download: PDF(554KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effect of thermal annealing on the light-induced effective minority carrier lifetime enhancement (LIE) phenomenon is investigated on the p-type Czochralski silicon (Cz-Si) wafer passivated by a phosphorus-doped silicon nitride (P-doped SiNx) thin film. The experimental results show that low temperature annealing (below 300°C) can not only increase the effective minority carrier lifetime of P-doped SiNx passivated boron-doped Cz-Si, but also improve the LIE phenomenon. The optimum annealing temperature is 180°C, and its corresponding effective minority carrier lifetime can be increased from initial 7.5 μs to maximum 57.7 μs by light soaking within 15 min after annealing. The analysis results of high-frequency dark capacitance-voltage characteristics reveal that the mechanism of the increase of effective minority carrier lifetime after low temperature annealing is due to the sharp enhancement of field effect passivation induced by the negative fixed charge density, while the mechanism of the LIE phenomenon after low temperature annealing is attributed to the enhancement of both field effect passivation and chemical passivation.
Received: 04 May 2015      Published: 30 October 2015
PACS:  73.20.-r (Electron states at surfaces and interfaces)  
  73.20.At (Surface states, band structure, electron density of states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/10/107303       OR      https://cpl.iphy.ac.cn/Y2015/V32/I10/107303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Hong-Zhe
ZHENG Song-Sheng
CHEN Chao
[1] Lee J Y and Glunz S W 2006 Sol. Energy Mater. Sol. Cells 90 82
[2] Panek P, Drabczyk K, Focsa A and Slaoui A 2009 Mater. Sci. Eng. B 165 64
[3] Liao B, Stangl R, Mueller T, Lin F, Bhatia C S and Hoex B 2013 J. Appl. Phys. 113 024509
[4] Thomson A F and McIntosh K R 2012 Prog. Photovolt: Res. Appl. 20 343
[5] Wan Y, Bullock J and Cuevas A 2015 Appl. Phys. Lett. 106 201601
[6] M?ckel H and Lüdemann R 2002 J. Appl. Phys. 92 2602
[7] Sharma V, Tracy C, Schroder D, Herasimenka S, Dauksher W and Bowden S 2014 Appl. Phys. Lett. 104 053503
[8] Weber K J and Jin H 2009 Appl. Phys. Lett. 94 063509
[9] Schmidt J and Cuevas A 1999 J. Appl. Phys. 86 3175
[10] Damiani B, Ristow A, Ebong A and Rohatgi A 2002 Prog. Photovolt: Res. Appl. 10 185
[11] Schmidt J and Bothe K 2004 Phys. Rev. B 69 024107
[12] Lim S Y, Rougieux F E and Macdonald D 2013 Appl. Phys. Lett. 103 092105
[13] Kern W and Puotinen D A 1970 RCA Rev. 31 187
[14] Olibet S, Vallat-Sauvain E, Ballif C, Korte L and Fesquet L 2007 The 17th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes (Vail Cascade Resort, Colorado, USA, 5–8 August 2007)
[15] Dingemans G and Kessels W M M 2012 J. Vac. Sci. Technol. A 30 040802
[16] CV Characterization of MOS Capacitors Using the Model 4200-SCS Semiconductor Characterization System (KEITHLEY Application Note Series, No. 2896)
[17] Paviet-Salomon B, Gall S and Slaoui A 2013 Mater. Sci. Eng. B 178 580
[18] Sze S M 1981 Physics of Semiconductor Devices 2nd edn (New York: Wiley)
[19] Seo M Y, Cho E N, Kim C E, Moon P and Yun I 2010 The 3rd International Proceedings of the Nanoelectronics Conference (Hong Kong 3–8 January 2010)
Related articles from Frontiers Journals
[1] Ruiling Gao, Chao Liu, Le Fang, Bixia Yao, Wei Wu, Qiling Xiao, Shunbo Hu, Yu Liu, Heng Gao, Shixun Cao, Guangsheng Song, Xiangjian Meng, Xiaoshuang Chen, and Wei Ren. Two-Dimensional Electron Gas in MoSi$_{2}$N$_{4}$/VSi$_{2}$N$_{4}$ Heterojunction by First Principles Calculation[J]. Chin. Phys. Lett., 2022, 39(12): 107303
[2] Yu Zhang, Qingyun Zhang, Youqi Ke, and Ke Xia. Giant Influence of Clustering and Anti-Clustering of Disordered Surface Roughness on Electronic Tunneling[J]. Chin. Phys. Lett., 2022, 39(8): 107303
[3] Shiwei Shen, Tian Qin, Jingjing Gao, Chenhaoping Wen, Jinghui Wang, Wei Wang, Jun Li, Xuan Luo, Wenjian Lu, Yuping Sun, and Shichao Yan. Coexistence of Quasi-two-dimensional Superconductivity and Tunable Kondo Lattice in a van der Waals Superconductor[J]. Chin. Phys. Lett., 2022, 39(7): 107303
[4] Xiaoxia Li, Qili Li, Tongzhou Ji, Ruige Yan, Wenlin Fan, Bingfeng Miao, Liang Sun, Gong Chen, Weiyi Zhang, and Haifeng Ding. Lieb Lattices Formed by Real Atoms on Ag(111) and Their Lattice Constant-Dependent Electronic Properties[J]. Chin. Phys. Lett., 2022, 39(5): 107303
[5] Danwen Yuan, Yuefang Hu, Yanmin Yang, and Wei Zhang. Topological Properties in Strained Monolayer Antimony Iodide[J]. Chin. Phys. Lett., 2021, 38(11): 107303
[6] Fan Gao and Yongqing Li. Influence of Device Geometry on Transport Properties of Topological Insulator Microflakes[J]. Chin. Phys. Lett., 2021, 38(11): 107303
[7] Kun Luo, Wei Chen, Li Sheng, and D. Y. Xing. Random-Gate-Voltage Induced Al'tshuler–Aronov–Spivak Effect in Topological Edge States[J]. Chin. Phys. Lett., 2021, 38(11): 107303
[8] Wen-Han Dong, De-Liang Bao, Jia-Tao Sun, Feng Liu, and Shixuan Du. Manipulation of Dirac Fermions in Nanochain-Structured Graphene[J]. Chin. Phys. Lett., 2021, 38(9): 107303
[9] Jun Zhang, Junbo Cheng, Shuaihua Ji, and Yeping Jiang. Visualizing the in-Gap States in Domain Boundaries of Ultra-Thin Topological Insulator Films[J]. Chin. Phys. Lett., 2021, 38(7): 107303
[10] Shuai Liu, Si-Min Nie, Yan-Peng Qi, Yan-Feng Guo, Hong-Tao Yuan, Le-Xian Yang, Yu-Lin Chen, Mei-Xiao Wang, and Zhong-Kai Liu. Measurement of Superconductivity and Edge States in Topological Superconductor Candidate TaSe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 107303
[11] Wei-Xiong Wu, Yang Feng, Yun-He Bai, Yu-Ying Jiang, Zong-Wei Gao, Yuan-Zhao Li, Jian-Li Luan, Heng-An Zhou, Wan-Jun Jiang, Xiao Feng, Jin-Song Zhang, Hao Zhang, Ke He, Xu-Cun Ma, Qi-Kun Xue, and Ya-Yu Wang. Gate Tunable Supercurrent in Josephson Junctions Based on Bi$_{2}$Te$_{3}$ Topological Insulator Thin Films[J]. Chin. Phys. Lett., 2021, 38(3): 107303
[12] Zi-Lin Ruan , Zhen-Liang Hao , Hui Zhang , Shi-Jie Sun , Yong Zhang , Wei Xiong , Xing-Yue Wang , Jian-Chen Lu, and Jin-Ming Cai . Topological-Defect-Induced Superstructures on Graphite Surface[J]. Chin. Phys. Lett., 2021, 38(2): 107303
[13] Chunyan Liao, Yahui Jin, Wei Zhang, Ziming Zhu, and Mingxing Chen. Fe$_{2}$Ga$_{2}$S$_{5}$ as a 2D Antiferromagnetic Semiconductor[J]. Chin. Phys. Lett., 2020, 37(10): 107303
[14] Ze-Rui Wang, Chen-Xiao Zhao, Guan-Yong Wang, Jin Qin, Bing Xia, Bo Yang, Dan-dan Guan, Shi-Yong Wang, Hao Zheng, Yao-Yi Li, Can-hua Liu, and Jin-Feng Jia. Controllable Modulation to Quantum Well States on $\beta$-Sn Islands[J]. Chin. Phys. Lett., 2020, 37(9): 107303
[15] Meihua Liu , Zhangwei Huang , Kuanchang Chang , Xinnan Lin , Lei Li , and Yufeng Jin. Performance Enhancement of AlGaN/GaN MIS-HEMTs Realized via Supercritical Nitridation Technology[J]. Chin. Phys. Lett., 2020, 37(9): 107303
Viewed
Full text


Abstract