CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Contact-Size-Dependent Cutoff Frequency of Bottom-Contact Organic Thin Film Transistors |
SUN Jing, WANG Hong**, WANG Zhan, WU Shi-Wei, MA Xiao-Hua** |
School of Advanced Materials and Nanotechnology, Key Laboratory of Wide Band-Gap Semiconductor Technology, Xidian University, Xi'an 710071
|
|
Cite this article: |
SUN Jing, WANG Hong, WANG Zhan et al 2015 Chin. Phys. Lett. 32 107304 |
|
|
Abstract The contact-size-dependent characteristic of cutoff frequency fT in bottom-contact organic thin film transistors (OTFTs) is studied. The effects of electrode thickness, field-effect mobility, channel length and gate-source voltage on the contact length (source and drain electrodes' length) related contact resistance of bottom-contact OTFTs are performed with a modified transmission line model. It is found that the contact resistance increases dramatically when the contact length is scaled down to 200 nm. With the help of the contact length related contact resistance, contact-size-dependent fT of bottom-contact OTFTs is studied and it is found that fT increases with the decrease of the contact length in bottom-contact OTFTs.
|
|
Received: 28 April 2015
Published: 30 October 2015
|
|
PACS: |
73.40.Cg
|
(Contact resistance, contact potential)
|
|
73.61.Ph
|
(Polymers; organic compounds)
|
|
85.30.Tv
|
(Field effect devices)
|
|
|
|
|
[1] Kaltenbrunner M et al 2013 Nature 499 458 [2] Nakayama K et al 2011 Adv. Mater. 23 1626 [3] Chen Y N, Xu Z, Zhao S L and Yin F F 2013 Chin. Phys. Lett. 30 037302 [4] Wu S H, Ryosuke N, Masatsugu T, Zhang Q S and Chihaya A 2014 Chin. Phys. B 23 098502 [5] Sekitani T and Someya T 2010 Adv. Mater. 22 2228 [6] Wang H, Li C H, Pan F, Wang H B and Yan D H 2009 Chin. Phys. Lett. 26 118501 [7] Chen C W, Chang T C, Liu P T, Lu H Y, Wang K C, Huang C S, Ling C C and Tseng T Y 2005 IEEE Electron Device Lett. 26 731 [8] Sun Q J, Xu Z, Zhao S L, Zhang F J, Gao L Y, Tian X Y and Wang Y S 2010 Acta Phys. Sin. 59 8125 (in Chinese) [9] Yu X G, Yu J S, Huang W and Zeng H J 2012 Chin. Phys. B 21 117307 [10] Tseng H R, Phan H, Luo C, Wang M, Perez L, Patel S, Kramer E, Nguyen T, Bazan G and Heeger A 2014 Adv. Mater. 26 2993 [11] Ma F, Wang S R, Li X G and Yan D H 2011 Chin. Phys. Lett. 28 118501 [12] Yuan Y, Giri G, Ayzner A L, Zoombelt A P, Mannsfeld S, Chen J H, Nordlund D, Toney M F, Huang J S and Bao Z N 2014 Nat. Commun. 5 3005 [13] Hirose T, Nagase T, Kobayashi T, Ueda R, Otomo A and Naito H 2010 Appl. Phys. Lett. 97 083301 [14] Wang H, Li L, Ji Z Y, Lu C Y, Guo J W, Wang L and Liu M 2013 IEEE Electron Device Lett. 34 69 [15] Wang H, Wang W, Sun P X, Ma X H, Li L, Liu M and Hao Y 2015 IEEE Electron Device Lett. 36 609 [16] Wang W, Li L, Ji Z Y, Ye T C, Lu N D, Li Z G, Li D M and Liu M 2013 IEEE Electron Device Lett. 34 1301 [17] Xu M S, Nakamura M, Sakai M and Kudo K 2007 Adv. Mater. 19 371 [18] Uemura T, Matsumoto T, Miyake K, Uno M, Ohnishi S, Kato T, Katayama M, Shinamura S, Hamada M, Kang M, Takimiya K, Mitsui C, Okamoto T and Takeya J 2014 Adv. Mater. 26 2983 [19] Ante F, Kalblein D, Zaki T, Zschieschang U, Takimiya K, Ikeda M, Sekitani T, Someya T, Burghartz J N, Kern K and Klauk H 2012 Small 8 73 [20] Richards T J and Sirringhaus H 2007 J. Appl. Phys. 102 094510 [21] Chiang C, Martin S, Kanicki J, Uagi Y, Yukawa T and Takeuchi S 1998 Jpn. J. Appl. Phys. 37 5914 [22] Fan C L, Lin Y Z, Wang S J and Huang C H 2012 Org. Electron. 13 2924 [23] Park J, Yang R D, Colesniuc C N and Sharoni A 2008 Appl. Phys. Lett. 92 193311 [24] Shim C, Maruoka F and Hattori R 2010 IEEE Trans. Electron Devices 57 195 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|