Chin. Phys. Lett.  2015, Vol. 32 Issue (10): 107302    DOI: 10.1088/0256-307X/32/10/107302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Wet Chemical Etching of Antimonide-Based Infrared Materials
HAO Hong-Yue1,2, XIANG Wei1,2, WANG Guo-Wei1,2, XU Ying-Qiang1,2, REN Zheng-Wei1,2, HAN Xi1,2, HE Zhen-Hong1,2, LIAO Yong-Ping1,2, WEI Si-Hang1,2, NIU Zhi-Chuan1,2**
1State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
HAO Hong-Yue, XIANG Wei, WANG Guo-Wei et al  2015 Chin. Phys. Lett. 32 107302
Download: PDF(644KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The roughness and the crystallographic orientation selectivity of etched antimonide-based infrared materials are examined and are used to optimize the chemical mesa etching process of the InAs/GaSb superlattice photodiode with the goal of reducing the dark current. The etchant used is based on phosphoric acid (H3PO4), citric acid (C6H8O7) and hydrogen peroxide (H2O2). The roughness of the mesa sidewalls and etching rates are compared and used to find an optimized etchant, with which we obtain optimized mid-wavelength infrared photodiodes possessing an R0A value of 466 Ω?cm2 and a detectivity of 1.43×1011 cm?Hz1/2W?1. Crystallographic orientation selectivity is seen in InAs etching, and also is seen in the InAs/GaSb superlattice wet chemical etching process.
Received: 16 January 2015      Published: 30 October 2015
PACS:  73.21.Cd (Superlattices)  
  73.61.Ey (III-V semiconductors)  
  73.20.At (Surface states, band structure, electron density of states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/10/107302       OR      https://cpl.iphy.ac.cn/Y2015/V32/I10/107302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HAO Hong-Yue
XIANG Wei
WANG Guo-Wei
XU Ying-Qiang
REN Zheng-Wei
HAN Xi
HE Zhen-Hong
LIAO Yong-Ping
WEI Si-Hang
NIU Zhi-Chuan
[1] Sai-Halasz G A, Tsu R and Esaki L 1977 Appl. Phys. Lett. 30 651
[2] Wang G W, Xiang W, Xu Y Q, Zhang L, Peng Z Y, Lv Y Q, Si J J, Wang J, Xing J L, Ren Z W and Niu Z C 2013 J. Semicond. 34 114012
[3] Hao R T, Xu Y Q, Zhou Z Q, Ren Z W and Niu Z C 2007 J. Semicond. 28 7
[4] Hood A, Evans A J, Ekhlassi A, Sullivan G, Piquette E, Lee D L, Tennant W E, Vurgaftman I, Canedy C L, Jackson E M, Nolde J A, Yi C and Aifer E H 2010 Proc. SPIE 7660 76601M
[5] Elena Plis, S Myers, M N Kutty, J Mailfert, E P Smith, S Johnson and S Krishna 2010 Appl. Phys. Lett. 97 123503
[6] Nathan V and Razeghi M 2007 Proc. SPIE 6542 654209
[7] Plis E A, Kutty M N and Krishna S 2013 Laser Photon. Rev. 7 1
[8] Chaghi R, Cervera C, A?t-Kaci H, Grech P, Rodriguez J B and Christol P 2009 Semicond. Sci. Technol. 24 065010
[9] Mairiaux E, Desplanque L, Wallart X, Dambrine G and Zaknoune M 2008 IEEE Indium Phosphide and Related Materials, 2008. IPRM 2008. 20th International Conference 10412098
[10] DeSalvo G C, Kaspi R and Bozada C A 2011 J. Electrochem. Soc. 141 12
[11] Dier O, Lin C, Grau M and Amann M C 2004 Semiconduct. Sci. Technol. 19 1250
[12] Song L, Degroote S, Choi K H, Borghs G and Heremans P 2003 Electrochem. Solid-State Lett. 6 G25
[13] Tan S L, Goh Y L, Das S D, Zhang S Y, Tan C H, David J P R, Gautam N, Kim H, Plis E and Krishna S 2010 Proc. SPIE 7838 783814
[14] Delaunay P Y, Nguyen B M, Hoffman D, Huang E K W, Manurkar P, Bogdanov S and Razeghi M 2009 Proc. SPIE 7222 72220W
[15] Huang E K, Nguyen B, Hoffman D, Delaunay P and Razeghi M 2009 Proc. SPIE 7222 72220Z
[16] Huang E K, Hoffman D, Nguyen B M, Delaunay P Y and Razeghi M 2009 Appl. Phys. Lett. 94 5
[17] Delaunay P Y 2010 PhD Dissertation (Evanston: Northwestern University)
Related articles from Frontiers Journals
[1] Chaofei Liu and Jian Wang. Spectroscopic Evidence for Electron Correlations in Epitaxial Bilayer Graphene with Interface-Reconstructed Superlattice Potentials[J]. Chin. Phys. Lett., 2022, 39(7): 107302
[2] Xiao-Feng Li, Ruo-Xuan Sun, Su-Yun Wang, Xiao Li, Zhi-Bo Liu, and Jian-Guo Tian. Recent Advances in Moiré Superlattice Structures of Twisted Bilayer and Multilayer Graphene[J]. Chin. Phys. Lett., 2022, 39(3): 107302
[3] Xu Zhang, Gaopei Pan, Yi Zhang, Jian Kang, and Zi Yang Meng. Momentum Space Quantum Monte Carlo on Twisted Bilayer Graphene[J]. Chin. Phys. Lett., 2021, 38(7): 107302
[4] Changyuan Zhou , Dezhi Song , Yeping Jiang, and Jun Zhang . Modification of the Hybridization Gap by Twisted Stacking of Quintuple Layers in a Three-Dimensional Topological Insulator Thin Film[J]. Chin. Phys. Lett., 2021, 38(5): 107302
[5] Yu-Hao Shen, Wen-Yi Tong, He Hu, Jun-Ding Zheng, and Chun-Gang Duan. Exotic Dielectric Behaviors Induced by Pseudo-Spin Texture in Magnetic Twisted Bilayer[J]. Chin. Phys. Lett., 2021, 38(3): 107302
[6] Da-Hong Su, Yun Xu, Wen-Xin Wang, Guo-Feng Song. Growth Control of High-Performance InAs/GaSb Type-II Superlattices via Optimizing the In/Ga Beam-Equivalent Pressure Ratio[J]. Chin. Phys. Lett., 2020, 37(3): 107302
[7] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 107302
[8] Xi-xia Tao, Chun-lan Mo, Jun-lin Liu, Jian-li Zhang, Xiao-lan Wang, Xiao-ming Wu, Long-quan Xu, Jie Ding, Guang-xu Wang, Feng-yi Jiang. Electroluminescence from the InGaN/GaN Superlattices Interlayer of Yellow LEDs with Large V-Pits Grown on Si (111)[J]. Chin. Phys. Lett., 2018, 35(5): 107302
[9] Wei-Jing Qi, Long-Quan Xu, Chun-Lan Mo, Xiao-Lan Wang, Jie Ding, Guang-Xu Wang, Shuan Pan, Jian-Li Zhang, Xiao-Ming Wu, Jun-Lin Liu, Feng-Yi Jiang. The Efficiency Droop of InGaN-Based Green LEDs with Different Superlattice Growth Temperatures on Si Substrates via Temperature-Dependent Electroluminescence[J]. Chin. Phys. Lett., 2017, 34(7): 107302
[10] Solaimani M.. Miniband Formation in GaN/AlN Constant-Total-Effective-Radius Multi-shell Quantum Dots[J]. Chin. Phys. Lett., 2015, 32(11): 107302
[11] LU Jian-Ya, ZHENG Xin-He, WANG Nai-Ming, CHEN Xi, LI Bao-Ji, LU Shu-Long, YANG Hui. GaNAs/InGaAs Superlattice Solar Cells with High N Content in the Barrier Grown by All Solid-State Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2015, 32(5): 107302
[12] ZHANG Hui-Yun, ZHANG Yu-Ping, GAO Ying, YIN Yi-Heng. Independently Tunable Multichannel Filters Based on Graphene Superlattices with Fractal Potential Patterns[J]. Chin. Phys. Lett., 2012, 29(12): 107302
[13] WANG Guo-Wei, XU Ying-Qiang, GUO Jie, TANG Bao, REN Zheng-Wei, HE Zhen-Hong, NIU Zhi-Chuan. Growth and Characterization of GaSb-Based Type-II InAs/GaSb Superlattice Photodiodes for Mid-Infrared Detection[J]. Chin. Phys. Lett., 2010, 27(7): 107302
[14] HUO Qiu-Hong, WANG Ru-Zhi, CHEN Si-Ying, XUE Kun, YAN Hui. Spin Transport in a Magnetic Superlattice with Broken Two-Fold Symmetry[J]. Chin. Phys. Lett., 2010, 27(6): 107302
[15] LU Shuo, SHANG Jia-Xiang, ZHANG Yue. Influence of Interface Structure of Co/Cu (100) Superlattices on Electronic Structure and Giant Magnetoresistance[J]. Chin. Phys. Lett., 2007, 24(11): 107302
Viewed
Full text


Abstract