CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Transport through a Single Barrier on Monolayer MoS2 |
CHENG Fang1**, REN Yi1, SUN Jin-Fang2 |
1Department of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410004 2College of Mechanical and Electrical Engineering, Anhui Polytechnic University, Wuhu 241000
|
|
Cite this article: |
CHENG Fang, REN Yi, SUN Jin-Fang 2015 Chin. Phys. Lett. 32 107301 |
|
|
Abstract We investigate theoretically quantum transport through a single barrier on monolayer MoS2. It is found that the transmission properties of spin-up (down) electrons in the K valley are the same as spin-down (up) electrons in the K' valley due to the time-reversal symmetry. Generally, the transmission probability for transport through an n–n–n (or p–p–p) junction is an oscillating function of incident angle, barrier height, as well as the incident energy of electrons. The present transmission shows a directional-dependent tunneling depending sensitively on the spin orientation for transport through a p–p–p junction. While for transport through an n–p-n junction, monolayers of MoS2 become opaque for almost all angles of incident θ0 except for θ0~θ0m (the resonant angles). The positions and numbers of resonant peaks in the transmission are determined by the distance between the two barriers and the spin orientation. The conductance in such systems can be tuned significantly by changing the height of the electric potential.
|
|
Received: 22 May 2015
Published: 30 October 2015
|
|
PACS: |
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
75.70.Tj
|
(Spin-orbit effects)
|
|
71.20.Nr
|
(Semiconductor compounds)
|
|
|
|
|
[1] Novoselov K S et al 2004 Science 306 666 [2] Radisavljevic B et al 2011 Nat. Nanotechnol. 6 147 [3] Splendiani A et al 2010 Nano Lett. 10 1271 [4] Xiao D et al 2007 Phys. Rev. Lett. 99 236809 [5] Rycerz A et al 2007 Nat. Phys. 3 172 [6] Zhu Z et al 2012 Nat. Phys. 8 89 [7] Mak K F et al 2012 Nat. Nanotechnol. 7 494 [8] Zeng H et al 2012 Nat. Nanotechnol. 7 490 [9] Wu S et al 2013 Nat. Phys. 9 149 [10] Jones A M et al 2013 Nat. Nanotechnol. 8 634 [11] Lebegue S and Eriksson O 2009 Phys. Rev. B 79 115409 [12] Li Y et al 2008 J. Am. Chem. Soc. 130 16739 [13] He J, Wu K, Sa R, Li Q and Wei Y 2010 Appl. Phys. Lett. 96 082504 [14] Ataca C, Akturk E and Ciraci S 2011 J. Phys. Chem. C 115 13303 [15] Han S W, Kwon H, Kim S K, Ryu S, Yun W S, Kim D H, Hwang J H, Kang J S, Baik J, Shin H J and Hong S C 2011 Phys. Rev. B 84 045409 [16] Ganatra R and Zhang Q 2014 ACS Nano 8 4074 [17] Na J, Joo M K, Shin M, Huh J, Kim J S, Piao M, Jin J E, Jang H K, Choi H J, Shim J H and Kim G T 2014 Nanoscale 6 433 [18] Renteria J, Samnakay R, Rumyantsev S L, Jiang C, Goli P, Shur M S and Balandin A A 2014 Appl. Phys. Lett. 104 153104 [19] Yan R, Simpson J R, Bertolazzi S, Brivio J, Watson M, Wu X, Kis A, Luo T, Walker A R H and Xing H G 2014 ACS Nano 8 986 [20] Perkins F K, Friedman A L, Cobas E, Campbell P M, Jernigan G G and Jonker B T 2013 Nano Lett. 13 668 [21] Zhang Z Z, Chang K and Peeters F M 2008 Phys. Rev. B 77 235411 [22] Zhai F, Zhao X, Chang K and Xu H Q 2010 Phys. Rev. B 82 115442 [23] Wu Z H, Zhai F, Peeters F M, Xu H Q and Chang K 2011 Phys. Rev. Lett. 106 176802 [24] Liao W H, Zhao H, Ouyang G, Chen K Q and Zhou G H 2012 Appl. Phys. Lett. 100 153112 [25] Zhu Z Y, Cheng Y C and Schwingenschl?gl U 2011 Phys. Rev. B 84 153402 [26] Xiao D, Liu G B, Feng W X, Xu X D and Yao W 2012 Phys. Rev. Lett. 108 196802 [27] Zahid F, Liu L, Zhu Y, Wang J and Guo H 2013 AIP Adv. 3 052111 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|