CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Wet Chemical Etching of Antimonide-Based Infrared Materials |
HAO Hong-Yue1,2, XIANG Wei1,2, WANG Guo-Wei1,2, XU Ying-Qiang1,2, REN Zheng-Wei1,2, HAN Xi1,2, HE Zhen-Hong1,2, LIAO Yong-Ping1,2, WEI Si-Hang1,2, NIU Zhi-Chuan1,2** |
1State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
|
|
Cite this article: |
HAO Hong-Yue, XIANG Wei, WANG Guo-Wei et al 2015 Chin. Phys. Lett. 32 107302 |
|
|
Abstract The roughness and the crystallographic orientation selectivity of etched antimonide-based infrared materials are examined and are used to optimize the chemical mesa etching process of the InAs/GaSb superlattice photodiode with the goal of reducing the dark current. The etchant used is based on phosphoric acid (H3PO4), citric acid (C6H8O7) and hydrogen peroxide (H2O2). The roughness of the mesa sidewalls and etching rates are compared and used to find an optimized etchant, with which we obtain optimized mid-wavelength infrared photodiodes possessing an R0A value of 466 Ω?cm2 and a detectivity of 1.43×1011 cm?Hz1/2W?1. Crystallographic orientation selectivity is seen in InAs etching, and also is seen in the InAs/GaSb superlattice wet chemical etching process.
|
|
Received: 16 January 2015
Published: 30 October 2015
|
|
PACS: |
73.21.Cd
|
(Superlattices)
|
|
73.61.Ey
|
(III-V semiconductors)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
|
|
|
[1] Sai-Halasz G A, Tsu R and Esaki L 1977 Appl. Phys. Lett. 30 651 [2] Wang G W, Xiang W, Xu Y Q, Zhang L, Peng Z Y, Lv Y Q, Si J J, Wang J, Xing J L, Ren Z W and Niu Z C 2013 J. Semicond. 34 114012 [3] Hao R T, Xu Y Q, Zhou Z Q, Ren Z W and Niu Z C 2007 J. Semicond. 28 7 [4] Hood A, Evans A J, Ekhlassi A, Sullivan G, Piquette E, Lee D L, Tennant W E, Vurgaftman I, Canedy C L, Jackson E M, Nolde J A, Yi C and Aifer E H 2010 Proc. SPIE 7660 76601M [5] Elena Plis, S Myers, M N Kutty, J Mailfert, E P Smith, S Johnson and S Krishna 2010 Appl. Phys. Lett. 97 123503 [6] Nathan V and Razeghi M 2007 Proc. SPIE 6542 654209 [7] Plis E A, Kutty M N and Krishna S 2013 Laser Photon. Rev. 7 1 [8] Chaghi R, Cervera C, A?t-Kaci H, Grech P, Rodriguez J B and Christol P 2009 Semicond. Sci. Technol. 24 065010 [9] Mairiaux E, Desplanque L, Wallart X, Dambrine G and Zaknoune M 2008 IEEE Indium Phosphide and Related Materials, 2008. IPRM 2008. 20th International Conference 10412098 [10] DeSalvo G C, Kaspi R and Bozada C A 2011 J. Electrochem. Soc. 141 12 [11] Dier O, Lin C, Grau M and Amann M C 2004 Semiconduct. Sci. Technol. 19 1250 [12] Song L, Degroote S, Choi K H, Borghs G and Heremans P 2003 Electrochem. Solid-State Lett. 6 G25 [13] Tan S L, Goh Y L, Das S D, Zhang S Y, Tan C H, David J P R, Gautam N, Kim H, Plis E and Krishna S 2010 Proc. SPIE 7838 783814 [14] Delaunay P Y, Nguyen B M, Hoffman D, Huang E K W, Manurkar P, Bogdanov S and Razeghi M 2009 Proc. SPIE 7222 72220W [15] Huang E K, Nguyen B, Hoffman D, Delaunay P and Razeghi M 2009 Proc. SPIE 7222 72220Z [16] Huang E K, Hoffman D, Nguyen B M, Delaunay P Y and Razeghi M 2009 Appl. Phys. Lett. 94 5 [17] Delaunay P Y 2010 PhD Dissertation (Evanston: Northwestern University) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|