Chin. Phys. Lett.  2015, Vol. 32 Issue (06): 068102    DOI: 10.1088/0256-307X/32/6/068102
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Theoretical and Experimental Optimization of InGaAs Channels in GaAs PHEMT Structure
GAO Han-Chao**, YIN Zhi-Jun
Science and Technology on Monolithic Integrated Circuits and Modules Laboratory, Nanjing Electronic Devices Institute, Nanjing 210016
Cite this article:   
GAO Han-Chao, YIN Zhi-Jun 2015 Chin. Phys. Lett. 32 068102
Download: PDF(545KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The ground-state energy level (GEL) and electron distribution of GaAs pseudomorphic high-electron-mobility transistors (PHEMTs) are analyzed by a self-consistent solution to the Schr?dinger–Poisson equations. The indium composition and thickness of the InGaAs channel are optimized according to the GEL position. The GEL position is not in direct proportion to 1/d2 (d is the channel thickness) by considering the influence of electron distribution in the InGaAs channel. Indium composition 0.22 and channel thickness 9 nm are obtained by considering the mismatch between InGaAs and AlGaAs. Several PHEMT samples are grown according to the theoretical results and mobility 6300 cm2/V?s is achieved.
Received: 10 November 2014      Published: 30 June 2015
PACS:  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
  73.21.Fg (Quantum wells)  
  68.55.ag (Semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/6/068102       OR      https://cpl.iphy.ac.cn/Y2015/V32/I06/068102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GAO Han-Chao
YIN Zhi-Jun
[1] Kao M Y, Smith P M, Ho P, Chao P C, Duh K H G, Jabra A A and Ballingall J M 1989 IEEE Electron Device Lett. 10 580
[2] Gaquiere C, Grunenputt J, Jambon D, Delos E, Ducatteau D, Werquin M, Theron D and Fellon P 2005 IEEE Electron Device Lett. 26 533
[3] Lin D M, Huang C C and Chan Y J 2009 IEEE Trans. Electron Devices 56 2638
[4] Rosenberg J J, Benlamri M, Kirchner P D, Woodall J M and Pettit G D 1985 IEEE Electron Device Lett. 6 491
[5] Ketterson A, Moloney M, Masselink W T, Peng C K, Klem J, Fischer R, Kopp W and Morkoc H 1985 IEEE Electron Device Lett. 6 628
[6] Li F X, Zheng W B, Kang Y H, Huang Q A and Lin G 2007 J. Microwaves 23 52
[7] Li D L and Zeng Y P 2006 Acta Phys. Sin. 55 3677 (in Chinese)
[8] Tan I H, Snider G L, Chang L D and Hu E L 1990 J. Appl. Phys. 68 4071
Related articles from Frontiers Journals
[1] Jia-Qi Guan, Li Wang, Pengdong Wang, Wei Ren, Shuai Lu, Rong Huang, Fangsen Li, Can-Li Song, Xu-Cun Ma, and Qi-Kun Xue. Honeycomb Lattice in Metal-Rich Chalcogenide Fe$_{2}$Te[J]. Chin. Phys. Lett., 2021, 38(11): 068102
[2] Zhilin Xu, Shuai-Hua Ji, Lin Tang, Jian Wu, Na Li, Xinqiang Cai, and Xi Chen. Molecular Beam Epitaxy Growth and Electronic Structures of Monolayer GdTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 068102
[3] Ding-Ming Huang, Jie-Yin Zhang, Jian-Huan Wang, Wen-Qi Wei, Zi-Hao Wang, Ting Wang, and Jian-Jun Zhang. Bufferless Epitaxial Growth of GaAs on Step-Free Ge (001) Mesa[J]. Chin. Phys. Lett., 2021, 38(6): 068102
[4] Cheng Zheng, Dapeng Zhao, Xinqiang Cai, Wantong Huang, Fanqi Meng, Qinghua Zhang, Lin Tang, Xiaopeng Hu, Lin Gu, Shuai-Hua Ji, Xi Chen. Zirconium Aided Epitaxial Growth of In$_{x}$Se$_{y}$ on InP(111) Substrates[J]. Chin. Phys. Lett., 2020, 37(8): 068102
[5] Matthias Batzill. Search for 2D Ferromagnets: Molecular Beam Epitaxy is a Critical Tool[J]. Chin. Phys. Lett., 2020, 37(8): 068102
[6] Shan Li, Jun Lu, Lian-Jun Wen, Dong Pan, Hai-Long Wang, Da-Hai Wei, and Jian-Hua Zhao. Unusual Anomalous Hall Effect in a Co$_{2}$MnSi/MnGa/Pt Trilayer[J]. Chin. Phys. Lett., 2020, 37(7): 068102
[7] Qian-Qian Yuan, Zhaopeng Guo, Zhi-Qiang Shi, Hui Zhao, Zhen-Yu Jia, Qianjin Wang, Jian Sun, Di Wu, and Shao-Chun Li. Ferromagnetic MnSn Monolayer Epitaxially Grown on Silicon Substrate[J]. Chin. Phys. Lett., 2020, 37(7): 068102
[8] Wen-Qi Wei, Jian-Huan Wang, Jie-Yin Zhang, Qi Feng, Zihao Wang, Hong-Xing Xu, Ting Wang, Jian-Jun Zhang. A CMOS Compatible Si Template with (111) Facets for Direct Epitaxial Growth of III–V Materials[J]. Chin. Phys. Lett., 2020, 37(2): 068102
[9] Zhi-Feng Yu, Jun Lu, Hai-Long Wang, Xu-Peng Zhao, Da-Hai Wei, Jia-Lin Ma, Si-Wei Mao, Jian-Hua Zhao. Tunable Perpendicular Magnetic Anisotropy in Off-Stoichiometric Full-Heusler Alloy Co$_{2}$MnAl[J]. Chin. Phys. Lett., 2019, 36(6): 068102
[10] Jia-Lin Ma, Hai-Long Wang, Xing-Min Zhang, Shuai Yan, Wen-Sheng Yan, Jian-Hua Zhao. Epitaxial Growth and Magnetic Properties of NiMnAs Films on GaAs Substrates[J]. Chin. Phys. Lett., 2019, 36(1): 068102
[11] Yi Gu, Hui-Jun Zheng, Xi-Ren Chen, Jia-Ming Li, Tian-Xiao Nie, Xu-Feng Kou. Influence of Surface Structures on Quality of CdTe(100) Thin Films Grown on GaAs(100) Substrates[J]. Chin. Phys. Lett., 2018, 35(8): 068102
[12] Xu-Peng Zhao, Da-Hai Wei, Jun Lu, Si-Wei Mao, Zhi-Feng Yu, Jian-Hua Zhao. Tunneling Anisotropic Magnetoresistance in $L1_{0}$-MnGa Based Antiferromagnetic Perpendicular Tunnel Junction[J]. Chin. Phys. Lett., 2018, 35(8): 068102
[13] Ben Du, Yi Gu, Yong-Gang Zhang, Xing-You Chen, Ying-Jie Ma, Yan-Hui Shi, Jian Zhang. Wavelength Extended InGaAsBi Detectors with Temperature-Insensitive Cutoff Wavelength[J]. Chin. Phys. Lett., 2018, 35(7): 068102
[14] Chong Liu, Haohao Yang, Can-Li Song, Wei Li, Ke He, Xu-Cun Ma, Lili Wang, Qi-Kun Xue. Observation of Tunneling Gap in Epitaxial Ultrathin Films of Pyrite-Type Copper Disulfide[J]. Chin. Phys. Lett., 2018, 35(2): 068102
[15] Kun Zhao, Hai-Cheng Lin, Wan-Tong Huang, Xiao-Peng Hu, Xi Chen, Qi-Kun Xue, Shuai-Hua Ji. Molecular Beam Epitaxy Growth of Tetragonal FeS Films on SrTiO$_{3}$(001) Substrates[J]. Chin. Phys. Lett., 2017, 34(8): 068102
Viewed
Full text


Abstract