Chin. Phys. Lett.  2015, Vol. 32 Issue (06): 068101    DOI: 10.1088/0256-307X/32/6/068101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Graphene-Based Tunable Polarization Insensitive Dual-Band Metamaterial Absorber at Mid-Infrared Frequencies
ZHANG Yu-Ping, LI Tong-Tong, LV Huan-Huan, HUANG Xiao-Yan, ZHANG Xiao, XU Shi-Lin, ZHANG Hui-Yun**
Qingdao Key Laboratory of Terahertz Technology, College of Electronic Communication and Physics, Shandong University of Science and Technology, Qingdao 266510
Cite this article:   
ZHANG Yu-Ping, LI Tong-Tong, LV Huan-Huan et al  2015 Chin. Phys. Lett. 32 068101
Download: PDF(643KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A graphene-based tunable dual-band metamaterial absorber which is polarization insensitive is numerically proposed at mid-infrared frequencies. In numerical simulation the metamaterial absorber exhibits two absorption peaks at the resonance wavelengths of 6.246 μm and 6.837 μm when the Fermi level of graphene is fixed at 0.6 eV. Absorption spectra at different Fermi levels of graphene are displayed and tuning functions are discussed in detail. Both the resonance wavelengths of the absorber blue shift with the increase in Fermi level of graphene. Moreover, the surface current distributions on the gold resonator and ground plane at the two resonance wavelengths are simulated to deeply understand the physical mechanism of resonance absorption.
Received: 28 January 2015      Published: 30 June 2015
PACS:  81.05.ue (Graphene)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  75.40.Mg (Numerical simulation studies)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/6/068101       OR      https://cpl.iphy.ac.cn/Y2015/V32/I06/068101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Yu-Ping
LI Tong-Tong
LV Huan-Huan
HUANG Xiao-Yan
ZHANG Xiao
XU Shi-Lin
ZHANG Hui-Yun
[1] Smith D R, Pendry J B and Wiltshire M C K 2004 Science 305 788
[2] Fang N and Zhang X 2003 Appl. Phys. Lett. 82 161
[3] Zhu J and Eleftheriades G V 2009 IEEE Antennas Wireless Propag. Lett. 8 295
[4] Gil I, Martin F, Rottenberg X and De Raedt W 2007 Electron. Lett. 43 1153
[5] Chen H, Wu B I, Zhang B and Kong J A 2007 Phys. Rev. Lett. 99 063903
[6] Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy H I, Fan K, Zhang X, Padilla W J and Averitt R D 2008 Phys. Rev. B 78 241103
[7] Chen H T 2012 Opt. Express 20 7165
[8] Huang L, Chowdhury D R, Ramani S, Reuten M T, Luo S N, Taylor A J and Chen H T 2012 Opt. Lett. 37 154
[9] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[10] Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D and Padilla W J 2008 Opt. Express 16 7181
[11] Shrekenhamer D, Chen W C and Padilla W J 2013 Phys. Rev. Lett. 110 177403
[12] Wen Q Y, Zhang H W, Xie Y S, Yang Q H and Liu Y L 2009 Appl. Phys. Lett. 95 241111
[13] Huang L and Chen H 2011 Prog. Electromagn. Res. 113 103
[14] Yang Z, Gao R, Hu N, Chai J, Cheng Y, Zhang L, Wei H, Kong E S and Zhang Y 2012 Nano-Micro Lett. 4 1
[15] Yu Z H Tian J R and Song Y R 2014 Chin. Phys. B 23 094206
[16] Lin H, Xu D, Pantoja M F, Garcia S G and Yang H L 2014 Chin. Phys. B 23 094203
[17] Chen Y Q 2014 Chin. Phys. Lett. 31 057802
[18] Sattari F and Faizabadi E 2013 Chin. Phys. Lett. 30 097201
[19] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[20] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
[21] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Solid State Commun. 146 351
[22] Fallahazad B, Kim S, Colombo L and Tutuc E 2010 Appl. Phys. Lett. 97 123105
[23] Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P and Xia F 2012 Nat. Nanotechnol. 7 330
[24] Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R and Wang F 2011 Nat. Nanotechnol. 6 630
[25] Jung I, Dikin D A, Piner R D and Ruoff R S 2008 Nano Lett. 8 4283
[26] Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenovi? M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, De Abajo F J G, Hillenbrand R and Koppens F H 2012 Nature 487 77
[27] Alaee R, Farhat M, Rockstuhl C and Lederer F 2012 Opt. Express 20 28017
[28] Andryieuski A and Lavrinenko A V 2013 Opt. Express 21 9144
[29] Zhang Y, Feng Y, Zhu B, Zhao J and Jiang T 2014 Opt. Express 22 22743
[30] Hanson G W 2008 J. Appl. Phys. 103 064302
Related articles from Frontiers Journals
[1] Jia-Jun Ma, Zhen-Yu Wang, Shui-Gang Xu, Yu-Xiang Gao, Yu-Yang Zhang, Qing Dai, Xiao Lin, Shi-Xuan Du, Jindong Ren, and Hong-Jun Gao. Local Density of States Modulated by Strain in Marginally Twisted Bilayer Graphene[J]. Chin. Phys. Lett., 2022, 39(4): 068101
[2] Xiao-Feng Li, Ruo-Xuan Sun, Su-Yun Wang, Xiao Li, Zhi-Bo Liu, and Jian-Guo Tian. Recent Advances in Moiré Superlattice Structures of Twisted Bilayer and Multilayer Graphene[J]. Chin. Phys. Lett., 2022, 39(3): 068101
[3] Fuxin Wang, Chao Zhang, Yanmei Yang, Yuanyuan Qu, Yong-Qiang Li, Baoyuan Man, and Weifeng Li. Tuning the Water Desalination Performance of Graphenic Layered Nanomaterials by Element Doping and Inter-Layer Spacing[J]. Chin. Phys. Lett., 2020, 37(11): 068101
[4] Zhibin Zhang, Jiajie Qi, Mengze Zhao, Nianze Shang, Yang Cheng, Ruixi Qiao, Zhihong Zhang, Mingchao Ding, Xingguang Li, Kehai Liu, Xiaozhi Xu, Kaihui Liu, Can Liu, and Muhong Wu. Scrolled Production of Large-Scale Continuous Graphene on Copper Foils[J]. Chin. Phys. Lett., 2020, 37(10): 068101
[5] Zhong Wang, Zhiyang Yuan, and Feng Liu. Extended Nernst–Planck Equation Incorporating Partial Dehydration Effect[J]. Chin. Phys. Lett., 2020, 37(9): 068101
[6] Hao-Jing Zhang, Gai-Ge Zheng, Yun-Yun Chen, Xiu-Juan Zou, Lin-Hua Xu. A Perfect Graphene Absorber with Waveguide Coupled High-Contrast Gratings[J]. Chin. Phys. Lett., 2018, 35(3): 068101
[7] S. Fahad, M. Ali, S. Ahmed, S. Khan, S. Alam, S. Akhtar. Effect of Metal Contact and Rapid Thermal Annealing on Electrical Characteristics of Graphene Matrix[J]. Chin. Phys. Lett., 2017, 34(10): 068101
[8] Ren-Xia Ning, Zheng Jiao, Jie Bao. Narrow and Dual-Band Tunable Absorption of a Composite Structure with a Graphene Metasurface[J]. Chin. Phys. Lett., 2017, 34(10): 068101
[9] GAO Chuan-Wei, WANG Ying-Ying, JIANG Jie, NAN Hai-Yan, NI Zhen-Hua. Raman Study of Polydimethylsiloxane Substrate Effect on Hydrogenation of Graphene[J]. Chin. Phys. Lett., 2015, 32(5): 068101
[10] ZHOU Xiang, CHEN Ji, GU Lin, MIAO Ling. Li Storage Performance for the Composite Structure Of Graphene and Boron Fullerene[J]. Chin. Phys. Lett., 2015, 32(02): 068101
[11] LIU Qing-Bin, YU Cui, LI Jia, SONG Xu-Bo, HE Ze-Zhao, LU Wei-Li, GU Guo-Dong, WANG Yuan-Gang, FENG Zhi-Hong. Radio-Frequency Performance of Epitaxial Graphene Field-Effect Transistors on Sapphire Substrates[J]. Chin. Phys. Lett., 2014, 31(07): 068101
[12] LUO Wen-Gang, WANG Hua-Feng, CAI Kai-Ming, HAN Wen-Peng, TAN Ping-Heng, HU Ping-An, WANG Kai-You. Synthesis of Homogenous Bilayer Graphene on Industrial Cu Foil[J]. Chin. Phys. Lett., 2014, 31(06): 068101
[13] CHEN Ya-Qin. Determination of the In-Plane Optical Conductivity of Multilayer Graphene Supported on a Transparent Substrate of Finite Thickness from Normal-Incidence Transmission Spectra[J]. Chin. Phys. Lett., 2014, 31(05): 068101
[14] Tatnatchai Suwannasit, Rassmidara Hoonsawat, I-Ming Tang, Bumned Soodchomshom. Josephson Effect in Graphene: Comparison of Real and Pseudo Vector Potential Barriers[J]. Chin. Phys. Lett., 2014, 31(03): 068101
[15] Bumned Soodchomshom. Pseudo Spin Torque Induced by Strain Field of Dirac Fermions in Graphene[J]. Chin. Phys. Lett., 2013, 30(12): 068101
Viewed
Full text


Abstract