Chin. Phys. Lett.  2015, Vol. 32 Issue (06): 064208    DOI: 10.1088/0256-307X/32/6/064208
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
In-Fiber Mach–Zehnder Interferometer Based on Waist-Enlarged Taper and Core-Mismatching for Strain Sensing
ZHANG Yun-Shan1**, QIAO Xue-Guang1,2, SHAO Min1, LIU Qin-Peng1
1Key Laboratory on Photoelectric Oil-Gas Logging and Detecting (Ministry of Education), School of Science, Xi'an Shiyou University, Xi'an 710065
2Department of Physics, Northwest University, Xi'an 710069
Cite this article:   
ZHANG Yun-Shan, QIAO Xue-Guang, SHAO Min et al  2015 Chin. Phys. Lett. 32 064208
Download: PDF(803KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An in-fiber Mach–Zehnder interferometer for strain measurement is proposed and experimentally demonstrated. The sensor consists of a taper followed by a short section of a multi-mode fiber (MMF) and a dispersion compensating fiber (DCF), which is sandwiched between two single mode fibers (SMFs). The taper is used as a fiber coupler to excite cladding modes in the SMF, and these cladding modes transmit within the MMF and the DCF. The core mode and the cladding modes interfere in the DCF–SMF fusion point to form intermodal interference. A well-defined interference spectrum is obtained in the experiment. Selected interference dips are used to measure the strain changes. The experimental results show that this device is sensitive to strain with the wavelength-referenced sensitivity of 2.6 pm/μ? and the power-referenced sensitivity of 0.0027 dB/μ?, respectively.
Received: 07 January 2015      Published: 30 June 2015
PACS:  42.81.Bm (Fabrication, cladding, and splicing)  
  42.81.Pa (Sensors, gyros)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/6/064208       OR      https://cpl.iphy.ac.cn/Y2015/V32/I06/064208
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Yun-Shan
QIAO Xue-Guang
SHAO Min
LIU Qin-Peng
[1] Sante R D, Donati L, Troiani E and Proli P 2014 Met. Mater. Int. 20 537
[2] Gao X D, Gao P and Wang X 2009 Opto-Electron. Eng. 36 88
[3] Chen F C, Yu C Q and Zhang H L 2014 J. Optoelectron. Laser 25 968
[4] Li J Z, Sun B C and Du Y L 2014 Optoelectron. Lett. 10 30
[5] Yang C X, Zhang H, Liang H, Miao Y P, Liu B, Wang Z and Liu Y G 2014 IEEE Photon. J. 6 6800808
[6] Shao M, Qiao X G, Fu H W, Li H D, Zhao J L and Li Y 2014 Opt. Lasers Eng. 52 86
[7] Li H D, Fu H W, Shao M, Zhao N, Qiao X G, Liu Y G, Li Y and Yan X 2013 Acta Phys. Sin. 62 214209 (in Chinese)
[8] Zu P, Xiang W H, Bai Y B and Jin Y X 2011 Acta Opt. Sin. 31 0806005 (in Chinese)
[9] Li L C, Xia L, Xie Z H and Liu D M 2012 Opt. Express 20 11109
[10] An J L, Liang H H, Jin Y X and Dong X Y 2014 Microwave Opt. Technol. Lett. 56 954
[11] Tong Z R, Wang J Y, Yang X F and Cao Y 2012 Acta Opt. Sin. 32 1206001 (in Chinese)
[12] Qureshi K K, Liu Z Y, Tam H and Zia M F 2013 Opt. Commun. 309 68
[13] Li E B 2007 IEEE Photon. Technol. Lett. 19 1226
[14] Sun M, Xu B, Dong X Y and Li Y 2012 Opt. Commun. 285 3721
[15] Xu F, Li C, Ren D X, Lu L, Lu W W, Feng F and Yu B L 2012 Chin. Opt. Lett. 10 070603
[16] Liu Z B, Yin B, Liang X, Bai Y L, Tan Z W, Liu S, Li Y, Liu Y and Jian S S 2014 Appl. Phys. B 117 571
[17] Zhou D P, Wei L, Liu W K, Liu Y and John W Y Lit 2008 Appl. Opt. 47 1668
Related articles from Frontiers Journals
[1] ZHENG Zhi-Jian, OUYANG De-Qin, ZHAO Jun-Qing, RUAN Shuang-Chen, YU Jun, GUO Chun-Yu, WANG Jin-Zhang. An Effective Thermal Splicing Method to Join Fluoride and Silica Fibers for a High Power Regime[J]. Chin. Phys. Lett., 2015, 32(11): 064208
[2] XING Ying-Bin, LIAO Lei, BU Fan, WANG Yi-Bo, PENG Jing-Gang, DAI Neng-Li, LI Jin-Yan. Fabrication of Tm-Doped Fibers for High Power and 121 W Output All-Fiber Tm-Doped Fiber Laser[J]. Chin. Phys. Lett., 2015, 32(03): 064208
[3] CUI Wei, SI Jin-Hai, CHEN Tao, YAN Fei, CHEN Feng, HOU Xun. Suppression of the Thermal Effects in the Femtosecond Laser Processing of Fiber Bragg Gratings[J]. Chin. Phys. Lett., 2013, 30(10): 064208
[4] SHI Sheng-Hui, ZHOU Xiao-Jun, ZHANG Zhi-Yao, LAN Lan, YIN Cong, LIU Yong. Fiber-Optic Solution Concentration Sensor Based on a Pressure-Induced Long-Period Grating in a Composite Waveguide[J]. Chin. Phys. Lett., 2012, 29(9): 064208
[5] LIU Cheng-Xiang, ZHANG Li, WU Xu, RUAN Shuang-Chen. High-Stability Superfluorescent Fiber Source Based on an Er3+-Doped Photonic Crystal Fiber[J]. Chin. Phys. Lett., 2012, 29(6): 064208
[6] DUAN Yu-Wen, ZHANG Ru, WANG Jin, CHEN Xi, ZHONG Kun. Suppercontinuum Generation in InP Nano Inner Cladding Fibers[J]. Chin. Phys. Lett., 2010, 27(5): 064208
[7] LIU Zhi-Ming, LI Jian, ZHENG Jing-Jing, FAN Lin-Yong, JIANG Wei-Wei, JIAN Shui-Sheng,. Fabrication of Optical Fiber Bragg Grating Assisted Mismatched Coupler[J]. Chin. Phys. Lett., 2010, 27(1): 064208
[8] YAO Lei, LOU Shu-Qin, JIAN Shui-Sheng. The Second Order Guided Modes Based on Photonic Bandgap Effects in Air/Glass Photonic Crystal Fibers[J]. Chin. Phys. Lett., 2009, 26(12): 064208
[9] FENG Su-Chun, XU Ou, LU Shao-Hua, JIAN Shui-Sheng. Switchable Multi-Wavelength Erbium-Doped Fiber Lasers based on a Mach-Zehnder Interferometer Using a Twin-Core Fiber[J]. Chin. Phys. Lett., 2009, 26(6): 064208
[10] ZHANG Ru, CHEN Xi, WANG Jin, DUAN Yu-Wen. Nonlinearity of InP-Doped Fibers[J]. Chin. Phys. Lett., 2009, 26(5): 064208
[11] TAN Xiao-Ling, GENG You-Fu, ZHANG Tie-Li, WANG Wei-Neng, WANG Peng, YAOJian-Quan. Bend-Induced Distortion in Large Mode Area Holey Fibre[J]. Chin. Phys. Lett., 2008, 25(5): 064208
[12] CHEN Wei, LI Jin-Yan, LU Pei-Xiang, LI Shi-Yu, JI Ling-Ling, JIANG Zuo-Wen, ZHANG Ji-Huang, PENG Jing-Gang. All-Fibre Ytterbium-Doped Photonic Crystal Fibre Laser with High Efficiency[J]. Chin. Phys. Lett., 2008, 25(3): 064208
[13] ZHANG De-Sheng, SHENG Qiu-Qin, DONG Xiao-Yi. Properties of Zero Dispersion Wavelengths in Silica Strands and Photonic Crystal Fibres[J]. Chin. Phys. Lett., 2008, 25(3): 064208
[14] WANG Jin, ZHANG Ru, GUAN Li-Ming. Quantum Size Effect of Inner Cladding Fibres with InP Nano Thin Films[J]. Chin. Phys. Lett., 2008, 25(2): 064208
[15] JIN Long, GUAN Bai-Ou, FANG Qiang, WANG Zhi, LIU Bo, LIU Jian-Guo, YUE Yang, KAI Gui-Yun, DONG Xiao-Yi. Bragg Gratings Written in Photonic Crystal Fibres with a High-Index Germanosilicate Core[J]. Chin. Phys. Lett., 2008, 25(1): 064208
Viewed
Full text


Abstract