CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Ar12+ Induced Irradiation Damage in Bulk Metallic Glass (Cu47Zr45Al8)98.5Y1.5 |
ZHANG Xiao-Nan, MEI Xian-Xiu**, MA Xue, WANG Ying-Min, QIANG Jian-Bing, WANG You-Nian |
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Dalian 116024
|
|
Cite this article: |
ZHANG Xiao-Nan, MEI Xian-Xiu, MA Xue et al 2015 Chin. Phys. Lett. 32 026801 |
|
|
Abstract The highly charged ion Ar12+ with an energy of 3 MeV is used for irradiating metallic glass (Cu47Zr45Al8)98.5Y1.5 and polycrystalline metallic W at the irradiation fluences of 1×1014 ions/cm2, 1×1015 ions/cm2 and 1×1016 ions/cm2. The main structure of metallic glass remains an amorphous phase under different irradiation fluences according to x-ray diffraction analysis. The scanning electron microscope observation on the morphologies indicates that no significant irradiation damage occurs on the surface and cross section of the metallic glass sample after different fluences of irradiation, while a large area of irregular cracks and holes were observed on the surface of metallic W at a fluence of 1×1016 ions/cm2, with cracks and channel impairments at a certain depth from the surface. The root-mean-square (rms) roughness of metallic glass increases with increasing fluence of Ar12+, while the reflectance decreases with increasing irradiation fluence. A nano-hardness test shows that the hardness of metallic glass decreases after irradiation. Under certain conditions, metallic glass (Cu47Zr45Al8)98.5Y1.5 exhibits a higher capability of resistance to Ar12+ irradiation in comparison with polycrystalline W.
|
|
Published: 20 January 2015
|
|
PACS: |
68.37.-d
|
(Microscopy of surfaces, interfaces, and thin films)
|
|
68.37.Ps
|
(Atomic force microscopy (AFM))
|
|
81.05.Kf
|
(Glasses (including metallic glasses))
|
|
|
|
|
[1] Wang T S et al 2009 Surf. Coat. Technol. 203 2383 [2] Schenkel T et al 1998 Phys. Rev. Lett. 81 2590 [3] Facsko S et al 2007 Radiat. Phys. Chem. 76 387 [4] Ueno K and Matsumoto Y 1991 Nucl. Instrum. Methods Phys. Res. Sect. B 59 1263 [5] Thomas S et al 2009 J. Appl. Phys. 105 033910 [6] Sprouster D J et al 2010 Phys. Rev. B 81 155414 [7] Hu Z et al 2013 Vacuum 89 142 [8] Bardamid A F et al 2008 J. Nucl. Mater. 376 125 [9] Mayr S G 2005 Phys. Rev. B 71 144109 [10] Cartera J et al 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 1518 [11] Rizza G et al 2004 Nucl. Instrum. Methods Phys. Res. Sect. B 226 609 [12] Vauth S and Mayr S G 2007 Phys. Rev. B 75 224107 [13] Inoue A et al 2001 Acta Mater. 49 2645 [14] Zhang W, Zhang Q S, Qin C L et al 2008 Mater. Sci. Eng. B 148 92 [15] Mei X X, Wang B, Dong C et al 2013 Nucl. Instrum. Methods Phys. Res. Sect. B 307 11 [16] Ye M Y, Shinya F, Noriyasu O et al 2000 J. Plasma Fusion Res. Ser. 3 265 [17] Neu R, Dux R, A Kallenbach et al 2005 Nucl. Fusion 45 209 [18] Hu Z C, Liu B, Ren D et al 2013 Acta Phys. Sin. 62 156801 (in Chinese) [19] Ziegler J F 1985 The Stopping and Range of Ions in Solids (New York: Pergamon) [20] Schenkel T, Briere M A, Schmidt-B?cking H et al 1997 Phys. Rev. Lett. 78 2481 [21] Ait M and Fqih El 2010 Eur. Phys. J. D 56 167 [22] Yamamura Y and Tawara H 1996 At. Data Nucl. Data Tables 62 149 [23] Yosuke I, Koji N, Tomotsugu S et al 2012 Nucl. Instrum. Methods Phys. Res. Sect. B 274 57 [24] Ahmedabadi P, Kain V, Gupta M et al 2011 J. Nucl. Mater. 415 123 [25] Vazquez-Lopez C, Zendejas-Leal B E, Fragoso R et al 2013 Rev. Mex. Fis. 59 165 [26] Hosemann P, Kiener D, Wang Y Q et al 2012 J. Nucl. Mater. 425 136 [27] Xu D, Lohwongwatana B and Duan G 2004 Acta Mater. 52 2621 [28] Inoue A 2000 Acta Mater. 48 279 [29] Voitsenya V S, Balden M, Belyaeva A I et al 2013 J. Nucl. Mater. 434 375 [30] Onodera N, Ishii A, Fukumoto Y et al 2012 Nucl. Instrum. Methods Phys. Res. Sect. B 282 1 [31] Kh V, Alimov B T, Hatano Y et al 2012 J. Nucl. Mater. 420 370 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|