Chin. Phys. Lett.  2015, Vol. 32 Issue (02): 026801    DOI: 10.1088/0256-307X/32/2/026801
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Ar12+ Induced Irradiation Damage in Bulk Metallic Glass (Cu47Zr45Al8)98.5Y1.5
ZHANG Xiao-Nan, MEI Xian-Xiu**, MA Xue, WANG Ying-Min, QIANG Jian-Bing, WANG You-Nian
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Dalian 116024
Cite this article:   
ZHANG Xiao-Nan, MEI Xian-Xiu, MA Xue et al  2015 Chin. Phys. Lett. 32 026801
Download: PDF(1272KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The highly charged ion Ar12+ with an energy of 3 MeV is used for irradiating metallic glass (Cu47Zr45Al8)98.5Y1.5 and polycrystalline metallic W at the irradiation fluences of 1×1014 ions/cm2, 1×1015 ions/cm2 and 1×1016 ions/cm2. The main structure of metallic glass remains an amorphous phase under different irradiation fluences according to x-ray diffraction analysis. The scanning electron microscope observation on the morphologies indicates that no significant irradiation damage occurs on the surface and cross section of the metallic glass sample after different fluences of irradiation, while a large area of irregular cracks and holes were observed on the surface of metallic W at a fluence of 1×1016 ions/cm2, with cracks and channel impairments at a certain depth from the surface. The root-mean-square (rms) roughness of metallic glass increases with increasing fluence of Ar12+, while the reflectance decreases with increasing irradiation fluence. A nano-hardness test shows that the hardness of metallic glass decreases after irradiation. Under certain conditions, metallic glass (Cu47Zr45Al8)98.5Y1.5 exhibits a higher capability of resistance to Ar12+ irradiation in comparison with polycrystalline W.
Published: 20 January 2015
PACS:  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
  68.37.Ps (Atomic force microscopy (AFM))  
  81.05.Kf (Glasses (including metallic glasses))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/2/026801       OR      https://cpl.iphy.ac.cn/Y2015/V32/I02/026801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Xiao-Nan
MEI Xian-Xiu
MA Xue
WANG Ying-Min
QIANG Jian-Bing
WANG You-Nian
[1] Wang T S et al 2009 Surf. Coat. Technol. 203 2383
[2] Schenkel T et al 1998 Phys. Rev. Lett. 81 2590
[3] Facsko S et al 2007 Radiat. Phys. Chem. 76 387
[4] Ueno K and Matsumoto Y 1991 Nucl. Instrum. Methods Phys. Res. Sect. B 59 1263
[5] Thomas S et al 2009 J. Appl. Phys. 105 033910
[6] Sprouster D J et al 2010 Phys. Rev. B 81 155414
[7] Hu Z et al 2013 Vacuum 89 142
[8] Bardamid A F et al 2008 J. Nucl. Mater. 376 125
[9] Mayr S G 2005 Phys. Rev. B 71 144109
[10] Cartera J et al 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 1518
[11] Rizza G et al 2004 Nucl. Instrum. Methods Phys. Res. Sect. B 226 609
[12] Vauth S and Mayr S G 2007 Phys. Rev. B 75 224107
[13] Inoue A et al 2001 Acta Mater. 49 2645
[14] Zhang W, Zhang Q S, Qin C L et al 2008 Mater. Sci. Eng. B 148 92
[15] Mei X X, Wang B, Dong C et al 2013 Nucl. Instrum. Methods Phys. Res. Sect. B 307 11
[16] Ye M Y, Shinya F, Noriyasu O et al 2000 J. Plasma Fusion Res. Ser. 3 265
[17] Neu R, Dux R, A Kallenbach et al 2005 Nucl. Fusion 45 209
[18] Hu Z C, Liu B, Ren D et al 2013 Acta Phys. Sin. 62 156801 (in Chinese)
[19] Ziegler J F 1985 The Stopping and Range of Ions in Solids (New York: Pergamon)
[20] Schenkel T, Briere M A, Schmidt-B?cking H et al 1997 Phys. Rev. Lett. 78 2481
[21] Ait M and Fqih El 2010 Eur. Phys. J. D 56 167
[22] Yamamura Y and Tawara H 1996 At. Data Nucl. Data Tables 62 149
[23] Yosuke I, Koji N, Tomotsugu S et al 2012 Nucl. Instrum. Methods Phys. Res. Sect. B 274 57
[24] Ahmedabadi P, Kain V, Gupta M et al 2011 J. Nucl. Mater. 415 123
[25] Vazquez-Lopez C, Zendejas-Leal B E, Fragoso R et al 2013 Rev. Mex. Fis. 59 165
[26] Hosemann P, Kiener D, Wang Y Q et al 2012 J. Nucl. Mater. 425 136
[27] Xu D, Lohwongwatana B and Duan G 2004 Acta Mater. 52 2621
[28] Inoue A 2000 Acta Mater. 48 279
[29] Voitsenya V S, Balden M, Belyaeva A I et al 2013 J. Nucl. Mater. 434 375
[30] Onodera N, Ishii A, Fukumoto Y et al 2012 Nucl. Instrum. Methods Phys. Res. Sect. B 282 1
[31] Kh V, Alimov B T, Hatano Y et al 2012 J. Nucl. Mater. 420 370
Related articles from Frontiers Journals
[1] Lili Han, Chunhua Du, Ziguang Ma, Yang Jiang, Kanglin Xiong, Wenxin Wang, Hong Chen, Zhen Deng, and Haiqiang Jia. Effect of Pt Interlayer on Low Resistivity Ohmic Contact to p-InP Layer and Its Optimization[J]. Chin. Phys. Lett., 2021, 38(6): 026801
[2] Shuo Yang, Zhenpeng Hu, Weihai Wang, Peng Cheng, Lan Chen, and Kehui Wu. Regular Arrangement of Two-Dimensional Clusters of Blue Phosphorene on Ag(111)[J]. Chin. Phys. Lett., 2020, 37(9): 026801
[3] Yusong Tu, Liang Zhao, Jiajia Sun, Yuanyan Wu, Xiaojie Zhou, Liang Chen, Xiaoling Lei, Haiping Fang, Guosheng Shi. Water-Mediated Spontaneously Dynamic Oxygen Migration on Graphene Oxide with Structural Adaptivity for Biomolecule Adsorption[J]. Chin. Phys. Lett., 2020, 37(6): 026801
[4] Yang-Yang Xu, Yu Wang, Ai-Yun Liu, Wang-Zhou Shi, Gu-Jin Hu, Shi-Min Li, Hui-Yong Deng, Ning Dai. Effect of Zr Content on Formation and Optical Properties of the Layered PbZr$_{x}$Ti$_{1-x}$O$_{3}$ Films[J]. Chin. Phys. Lett., 2020, 37(2): 026801
[5] Li Dong, Aiwei Wang, En Li, Qin Wang, Geng Li, Qing Huan, Hong-Jun Gao. Formation of Two-Dimensional AgTe Monolayer Atomic Crystal on Ag(111) Substrate[J]. Chin. Phys. Lett., 2019, 36(2): 026801
[6] Chong Wang, Hao Zhong, Eddy Simoen, Xiang-Dong Jiang, Ya-Dong Jiang, Wei Li. Structural Variation and Its Influence on the $1/f$ Noise of a-Si$_{1-x}$Ru$_{x}$ Thin Films Embedded with Nanocrystals[J]. Chin. Phys. Lett., 2019, 36(2): 026801
[7] Ai-Min Li, Lu-Dong, Xin-Yi Yang, Zhen Zhu, Guan-Yong Wang, Dan-Dan Guan, Hao Zheng, Yao-Yi Li, Canhua Liu, Dong Qian, Jin-Feng Jia. Metastable Face-Centered Cubic Structure and Structural Transition of Sn on 2H-NbSe$_{2}$ (0001)[J]. Chin. Phys. Lett., 2018, 35(6): 026801
[8] Wei-Jun Wan, Wei Ren, Xiao-Ran Meng, Yun-Xia Ping, Xing Wei, Zhong-Ying Xue, Wen-Jie Yu, Miao Zhang, Zeng-Feng Di, Bo Zhang. Improvement of Nickel-Stanogermanide Contact Properties by Platinum Interlayer[J]. Chin. Phys. Lett., 2018, 35(5): 026801
[9] Somayeh Asgary, Amir Hoshang Ramezani. Dependence of Nitrogen/Argon Reaction Gas Amount on Structural, Mechanical and Optical Properties of Thin WN$_{x}$ Films[J]. Chin. Phys. Lett., 2017, 34(12): 026801
[10] Peng Sun, Wei-Wei Yu, Xiao-Hang Pan, Wei Wei, Yan Sun, Ning-Yi Yuan, Jian-Ning Ding, Wen-Chao Zhao, Xin Chen, Ning Dai. Fluorescence Enhancement of Metal-Capped Perovskite CH$_{3}$NH$_{3}$PbI$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2017, 34(9): 026801
[11] V. Dalouji, S. M. Elahi, A. Ghaderi, S. Solaymani. Porosity Evaluation and the Power Spectral Densities Analyses of Carbon–Nickel Composite Films Annealed at Different Temperatures[J]. Chin. Phys. Lett., 2016, 33(08): 026801
[12] Ling Wang, Wang Liu, Yue Li, Yun-Long Shi, Yuan-Xia Lao, Xiao-Bo Lu, Ai-Hong Deng, Yuan Wang. Diffusion Behavior of Cumulative He Doped in Cu/W Multilayer Nanofilms at Room Temperature[J]. Chin. Phys. Lett., 2016, 33(06): 026801
[13] SUN Qing-Ling, WANG Lu, WANG Wen-Qi, SUN Ling, LI Mei-Cheng, WANG Wen-Xin, JIA Hai-Qiang, ZHOU Jun-Ming, CHEN Hong. Growth and Characterization of InAs1?xSbx with Different Sb Compositions on GaAs Substrates[J]. Chin. Phys. Lett., 2015, 32(10): 026801
[14] WANG Xian-Ying, XIE Shu-Fan, CHEN Xiao-Dong, LIU Yang-Yang. Direct Piezoelectric Potential Measurement of ZnO Nanowires Using a Kelvin Probe Force Microscope[J]. Chin. Phys. Lett., 2013, 30(4): 026801
[15] WU Dan, YIN Ya-Jun, XIE Hui-Min, DAI Fu-Long. Archimedes Spiral Cracks Developed in a Nanofilm/Substrate System[J]. Chin. Phys. Lett., 2013, 30(3): 026801
Viewed
Full text


Abstract